Skip to main content

Femtosecond-Laser Induced Periodic Surface Structures for Surface Enhanced Raman Spectroscopy of Biomolecules

  • Chapter
  • First Online:
Progress in Nonlinear Nano-Optics

Abstract

Nanostructured metal surfaces can be used as high-efficiency substrates for surface-enhanced Raman spectroscopy (SERS). For this purpose, laser induced periodic surface structures (LIPSS) were generated by illuminating silver and copper substrates with pulses of a 1-kHz Ti:sapphire femtosecond laser and second harmonic generation (SHG). We report on the details of the structuring experiments and the application of the metallic nanogratings to the SERS of selected types of biomolecules like DNA (herring sperm) and protein molecules (egg albumen) (Messaoudi et al. Proc. SPIE 8972: 8972-17, 2014). Maximum enhancement was detected for Ag substrates processed with at the SHG wavelength of 400 nm and structure periods at a comparable scale. In contrast to that, long-period ripples induced at the fundamental wavelength of 800 nm were found to show the highest enhancement for copper substrates. As a possible explanation we assume an additional significant influence of nanoparticles deposited on the surface. A structuring speed in the range of 0.125 mm2/s was obtained. The surface quality was characterized by field emission scanning electron microscopy and Raman spectroscopy. As a probably significant factor for the functionality, the chemical modifications of the metal structures were studied as well. The analysis of the vibration spectra indicates that the generation of LIPSS in air leads to thin oxidation layers which may improve the biocompatibility of the nanostructures. The better insight into the complex mechanisms of laser-induced nanostructure formation is expected to further stimulate neighboring fields of applications of functionalized surfaces like photocatalysis, photovoltaics or biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Messaoudi, S.K. Das, J. Lange, F.Heinrich, S. Schrader, M. Frohme, R. Grunwald, Femtosecond-laser induced nanostructuring for surface enhanced Raman spectroscopy. Proc. SPIE 8972, 8972-17 (2014)

    Google Scholar 

  2. M.J. Natan, Surface enhanced Raman scattering. Faraday Discuss. 132, 321–328 (2006)

    Article  ADS  Google Scholar 

  3. A. Barhoumi, D. Zhang, F. Tam, N.J. Halas, Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523–5529 (2008)

    Article  Google Scholar 

  4. C.E. Taylor, S.D. Garvey, J.E. Pemberton, Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Anal. Chem. 68, 2401–2408 (1996)

    Article  Google Scholar 

  5. S. Pahlow, A. März, B. Seise, K. Hartmann, I. Freitag, E. Kämmer, R. Böhme, V. Deckert, K. Weber, D. Cialla, J. Popp, Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng. Life Sci. 12, 131–143 (2012)

    Article  Google Scholar 

  6. B. Küstner, M. Gellner, M. Schutz, F. Schoppler, A. Marx, P. Ströbel, P. Adam, C. Schmuck, S. Schlücker, SERS labels for red laser excitation: silica-encapsulated SAMS on tunable gold/silver nanoshells. Angew. Chem. Int. Ed. 48, 1950–1953 (2009)

    Article  Google Scholar 

  7. M. Culha, B. Cullum, N. Lavrik, C.K. Klutse, Surface-enhanced Raman scattering as an emerging characterization and detection technique. J. Nanotechnol. 2012, 971380 (2012)

    Google Scholar 

  8. J.D. Driskell, Y. Zhu, C.D. Kirkwood, Y. Zhao, Y. Dluhy, R.A. Tripp, Rapid and sensitive detection of rotavirus molecular signatures using surface enhanced Raman spectroscopy. PLoS ONE 5, e10222 (2010)

    Article  ADS  Google Scholar 

  9. S.Y. Feng, J.Q. Lin, M. Cheng, Y.Z. Li, G.N. Chen, Z.F. Huang, Y. Yu, R. Chen, H.S. Zeng, Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation. Appl. Spectrosc. 63, 1089–1094 (2009)

    Article  ADS  Google Scholar 

  10. Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, S.-T. Lee, Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6, 122–130 (2011)

    Article  Google Scholar 

  11. S.L. Hennigan, J.D. Driskell, R.A. Dluhy, Y. Zhao, R.A. Tripp, K.B. Waites, D.C. Krause, Detection of mycoplasma pneumoniae in simulated and true clinical throat swab specimens by nanorod array-surface-enhanced Raman spectroscopy. PLoS ONE 5, e13633 (2010)

    Article  ADS  Google Scholar 

  12. P. Chen, A.G. Shen, W. Zhao, S.J. Baek, H. Yuan, J.M. Hu, Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis. Appl. Opt. 48, 4743 (2009)

    Article  ADS  Google Scholar 

  13. J. Shen, L. Fan, J. Yang, A.G. Shen, J.M. Hu, A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos. Int. 21, 81–87 (2010)

    Article  Google Scholar 

  14. C. David, N. Guillot, H. Shen, T. Toury, M.L. de la Chapelle, SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21, 475501–475506 (2010)

    Google Scholar 

  15. Ö.F. Karatas, E. Sezgin, Ö. Aydin, M. Culha, Interaction of gold nanoparticles with mitochondria. Colloids Surf. B 71, 315–318 (2009)

    Article  Google Scholar 

  16. W. Zheng, H.C. Chiamori, G.L. Liu, L. Lin, F.F. Chen, Nanofabricated plasmonic nano-bio hybrid structures in biomedical detection. Nanotechnol. Rev. 1, 213–233 (2012)

    Article  Google Scholar 

  17. W. Xie, C. Mao, Bio-imaging, detection and analysis by using nanostructures as SERS substrates. J. Mater. Chem. 21, 5190–5202 (2011)

    Article  Google Scholar 

  18. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  19. W. Ke, D. Yu, J. Wu, Raman spectroscopic study of the influence on herring sperm DNA of heat treatment and ultraviolet radiation. Spectrochim. Acta Part A 55, 1081–1090 (1999)

    Article  ADS  Google Scholar 

  20. S. Ngarize, A. Adams, N.K. Howell, Studies on egg albumen and whey protein interactions by FT-Raman spectroscopy and rheology. Food Hydrocolloids 18, 49–59 (2004)

    Article  Google Scholar 

  21. H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, Y.W. Lin, T.M. Wu, Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J. Colloid Interface Sci. 360, 305–308 (2011)

    Article  Google Scholar 

  22. M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, Periodically structured metallic substrates for SERS. Sens. Actuators B 51, 285–291 (1998)

    Article  Google Scholar 

  23. Y. Dai, M. He, B. Lu, X. Yan, G. Ma, Surface-enhanced Raman scattering in femtosecond laser-nanostructured Ag substrate. J. Phys.: Conf. Ser. 276, 012015 (2011)

    ADS  Google Scholar 

  24. J. Wang, C. Guo, Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals. J. Appl. Phys. 102, 053522 (2007)

    Article  ADS  Google Scholar 

  25. J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses. Opt. Express 20, 905–911 (2012)

    Article  ADS  Google Scholar 

  26. Y. Huo, T. Jia, D. Feng, S. Zhang, J. Liu, J. Pan, K. Zhou, Z. Sun, Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water. Laser Phys. 23, 056101 (2013)

    Article  Google Scholar 

  27. J. Wang, C. Guo, Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses. J. Appl. Phys. 100, 023511 (2006)

    Article  ADS  Google Scholar 

  28. M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Crystal structures on a copper thin film with a surface of periodic self-organized nanostructures induced by femtosecond laser pulses. Phys. Rev. B 83, 235413 (2011)

    Article  ADS  Google Scholar 

  29. D. Scorticati, G.-W. Römer, D.F. de Lange, B. Huis in’t Veld, Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers. J. Nanophotonics 6, 063528 (2012)

    Google Scholar 

  30. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  31. J. Reif, O. Varlamova, M. Ratzke, M. Schade, H.S. Leipner, T. Arguirov, Multipulse feedback in self- organized ripples formation upon femtosecond laser ablation from silicon. Appl. Phys. A 101, 361–365 (2010)

    Google Scholar 

  32. A.Y. Vorobyev, C. Guo, Effects of nanostructure-covered femtosecond laser induced periodic surface structures on optical absorptance of metals. Appl. Phys. A 86, 321–324 (2007)

    Article  ADS  Google Scholar 

  33. M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur, High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Letters 8, 2087–2091 (2008)

    Article  ADS  Google Scholar 

  34. R. Taylor, C. Hnatovsky, E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2, 26–46 (2008)

    Article  Google Scholar 

  35. R. Torres, T.E. Itina, V. Vervisch, M. Halbwax, T. Derrien, T. Sarnet, M. Sentis, J. Ferreira, F. Torregrosa, L. Roux, Study on laser induced periodic structures and photovoltaic application. AIP Conf. Proc. 1278, 576–581 (2010)

    Article  ADS  Google Scholar 

  36. J.T. Chen, W.C. Lai, Y.J. Kao, Y.Y. Yang, J.K. Sheu, Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt. Express 20, 5689–5695 (2012)

    Article  ADS  Google Scholar 

  37. Y. Shimotsuma, M. Sakakura, K. Miura, J.R Qiu, P. G. Kazansky, K. Fujita, K. Hirao, Application of femtosecond-laser induced nanostructures in optical menory. J. Nanosci. Nanotech. 71, 94104, 2078–0338 (2007)

    Google Scholar 

  38. T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22, 4917–4919 (2006)

    Article  Google Scholar 

  39. E.D. Diebold, N.H. Mack, S.K. Doorn, E. Mazur, Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering. Langmuir 25, 1790–1794 (2009)

    Article  Google Scholar 

  40. R. Buividas, P.R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann. Phys. 524, L5–L10 (2012)

    Article  ADS  Google Scholar 

  41. C.H. Lin, L. Jiang, Y.H. Chai, H. Xiao, S.J. Chen, H.L. Tsai, One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Opt. Express 17, 21581–21589 (2009)

    Article  Google Scholar 

  42. C.H. Lin, L. Jiang, H. Xiao, S.J. Chen, H.L. Tsai, Surface-enhanced Raman scattering microchip fabricated by femtosecond laser. Opt. Lett. 35, 2937–2939 (2010)

    Article  ADS  Google Scholar 

  43. G.L. Liu, L.P. Lee, Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 87, 074101 (2005)

    Article  ADS  Google Scholar 

  44. S.K. Das, K. Dasari, A. Rosenfeld, R. Grunwald, Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus. Nanotechnology 21, 155302 (2010)

    Article  ADS  Google Scholar 

  45. W. Ke, D. Yu, J. Wu, Raman spectroscopic study of the influence on herring sperm DNA of heat tratment and ultraviolet radiation. Spectrochim. Acta Part A 55, 1081–1090 (1999)

    Article  ADS  Google Scholar 

  46. P. Lovera, N. Creedon, H. Alatawi, M. Mitchell, M. Burke, A.J. Quinn, A. O’Riordan, Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 25, 175502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank T. Elsaesser (MBI, Berlin) and W. Seeber (Otto Schott Institute, Jena). The work was financially supported by DFG (project GR 1782/12-2). Figures are presented with permission of the SPIE—international society for optics and photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Grunwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Messaoudi, H. et al. (2015). Femtosecond-Laser Induced Periodic Surface Structures for Surface Enhanced Raman Spectroscopy of Biomolecules. In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_12

Download citation

Publish with us

Policies and ethics