Skip to main content

Bayesian Lasso with Effect Heredity Principle

  • Chapter
Frontiers in Statistical Quality Control 11

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

  • 1552 Accesses

Abstract

The Bayesian Lasso is a variable selection method that can be applied in situations where there are more variables than observations; thus, both main effects and interaction effects can be considered in screening experiments. To apply the Bayesian framework to experiments involving the effect heredity principle, which governs the relationships between interactions and their corresponding main effects, several initial tunings of the Bayesian framework are required. However, it is rather unnatural to specify these tuning values before running an experiment. In this paper, we propose models that do not require the initial tuning values to be specified in advance. The proposed methods are demonstrated with screening examples such as Plackett–Burman and mixed-level design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, D. F., & Mallow, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society B, 36, 99–102.

    MATH  Google Scholar 

  • Bergquist, B., Vanhatolo, E., & Nordenvaad, M. L. (2011). A bayesian analysis of unreplicated two-level factorials using effects sparsity, hierarchy, and heredity. Quality Engineering, 23, 152–166.

    Article  Google Scholar 

  • Chipman, H. (1996). Bayesian variable selection with related predictors. The Canadian Journal of Statistics, 24, 17–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Chipman, H., Hamada, M., & Wu, C. F. J. (1997). A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics, 39, 372–381.

    Article  MATH  Google Scholar 

  • George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881–889.

    Article  Google Scholar 

  • Hamada, M., & Wu, C. F. J. (1992). Analysis of designed experiments with complex aliasing. Journal of Quality Technology, 24, 130–137.

    Google Scholar 

  • Henkin, E. (1986). The reduction of variability of blood glucose levels. In Fourth Supplier Symposium on Taguchi Methods (pp. 758–785). Dearborn, MI: American Supplier Institute.

    Google Scholar 

  • Hunter, G. B., Hodi, F. S., & Eager, T. W. (1982). High-cycle fatigue of weld repaired cast Ti-6A1-4V. Metallurgical Transactions, 13A, 1589–1594.

    Article  Google Scholar 

  • Kuo, L., & Mallick, B. (1998). Variable selection for regression models. Sankhya B, 60, 65–81.

    MATH  MathSciNet  Google Scholar 

  • Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression (with discussion). Journal of the American Statistical Association, 83, 1023–1036.

    Article  MATH  MathSciNet  Google Scholar 

  • Nam, H. C., William, L., & Ji, Z. (2010). Variable selection with the strong heredity constraint and its oracle property. Journal of the American Statistical Association, 105, 354–364.

    Article  MathSciNet  Google Scholar 

  • Noguchi, H., Ojima, Y., & Yasui, S. (2012). A practical variable selection for linear models. In H. -J. Lenz, W. Schmid, & P. -T. Wilrich (Eds.), Frontiers in statistical quality control (Vol. 10, pp. 349–360). Heidelberg: Physica.

    Chapter  Google Scholar 

  • Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103, 681–686.

    Article  MATH  MathSciNet  Google Scholar 

  • Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.

    Article  MATH  MathSciNet  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., Gilks, W., & Lunn, D. (1994/2003). BUGS: Bayesian inference using Gibbs sampling. Cambridge, UK: MRC Biostatistics Unit. http://www.mrc-bsu.cam.ac.uk/bugs/.

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehisa Noguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noguchi, H., Ojima, Y., Yasui, S. (2015). Bayesian Lasso with Effect Heredity Principle. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 11. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-12355-4_21

Download citation

Publish with us

Policies and ethics