Skip to main content

A Spanning Tree Hierarchical Model for Land Cover Classification

  • Conference paper
  • First Online:
Interdisciplinary Bayesian Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 118))

  • 2229 Accesses

Abstract

Image segmentation persists as a major statistical problem, with the volume and complexity of data expanding alongside new technologies. Land cover classification, one of the largest problems in Remote Sensing, provides an important example of image segmentation whose needs transcend the choice of a particular classification method. That is, the challenges associated with land cover classification pervade the analysis process from data pre–processing to estimation of a final land cover map. Multispectral, multitemporal data with inherent spatial relationships have hardly received adequate treatment due to the large size of the data and the presence of missing values. In this chapter we propose a novel, concerted application of methods which provide a unified way to estimate model parameters, impute missing data, reduce dimensionality, and classify land cover. This comprehensive analysis adopts a Bayesian approach which incorporates prior subject matter knowledge to improve the interpretability, efficiency, and versatility of land cover classification. We explore a parsimonious parametric model whose structure allows for a natural application of principal component analysis to the isolate important spectral characteristics while preserving temporal information. Moreover, it allows us to impute missing data and estimate parameters via expectation-maximization. We employ a spanning tree approximation to a lattice Potts model prior to incorporating spatial relationships in a judiciousway and more efficiently access the posterior distribution of the pixel labels. We achieve exact inference of the labels via the centroid estimator. We demonstrate this series of analysis on a set of MODIS data centered on Montreal, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. 48(3), 259–302 (1986). (With discussions).

    MATH  MathSciNet  Google Scholar 

  2. Bonan, G.B., Oleson, K.W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., Dickinson, R.E., Yang, Z.L.: The land surface climatology of the community land model coupled to the NCAR community climate model*. J. Clim. 15(22), 3123–3149 (2002)

    Article  Google Scholar 

  3. Carvalho, L.E., Lawrence, C.E.: Centroid estimation in discrete high-dimensional spaces with applications in biology. Proc. Natl. Acad. Sci. 105(9), 3209–3214 (2008)

    Article  Google Scholar 

  4. Crist, E.P., Cicone, R.C.: A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 22(3), 256–263 (1984)

    Article  Google Scholar 

  5. DeFries, R., Townshend, J.: NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 15(17), 3567–3586 (1994)

    Article  Google Scholar 

  6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Series B (Methodological) 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, J.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 108(D22), 885–1 (2003)

    Article  Google Scholar 

  8. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X.: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010)

    Article  Google Scholar 

  9. Glanz, H., Carvalho, L.: An expectation-maximization algorithm for the matrix normal distribution. arXiv preprint arXiv:1309.6609 (2013)

    Google Scholar 

  10. Glanz, H., Carvalho, L., Sulla-Menashe, D., Friedl, M.: A parsimonious model for land cover classification and characterization of training data using multitemporal remotely sensed imagery. Submitted (2014)

    Google Scholar 

  11. Hansen, M., Defries, R., Townshend, J., Sohlberg, R.: Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens. 21(6–7), 1331–1364 (2000).

    Article  Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2005)

    Google Scholar 

  13. Lobser, S., Cohen, W.: MODIS tasselled cap: land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens. 28(22), 5079–5101 (2007)

    Article  Google Scholar 

  14. Moser, G., Serpico, S.B., Benediktsson, J.A.: Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images. Proc. IEEE 101(3), 631–651 (2013)

    Article  Google Scholar 

  15. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1998)

    MATH  Google Scholar 

  16. Potts, R.: Some generalized order-disorder transformations. Proc. Camb. Philos. Soc. 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  17. Running, S.W., Coughlan, J.C.: A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 42(2), 125–154 (1988)

    Article  Google Scholar 

  18. Schaaf, C., Gao, F., Strahler, A., Lucht, W., Li, X., Tsang, T., Strugnell, N., Zhang, X., Jin, Y., Muller, J., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d’Entremont, R., Hu, B., Liang, S., J.L., P., Roy, D.: First operational BRDF, Albedo Nadir reflectance products from MODIS. Remote Sens. Environ. 83(1), 135–148 (2002)

    Google Scholar 

  19. Srivastava, M., Khatri, C.: An Introduction to Multivariate Statistics. North Holland, New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

Hunter  Glanz was  supported by  funding from  NASA under grant number NNX11AG40G. Luis Carvalho was supported by NSF grant DMS-1107067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter Glanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Glanz, H., Carvalho, L. (2015). A Spanning Tree Hierarchical Model for Land Cover Classification. In: Polpo, A., Louzada, F., Rifo, L., Stern, J., Lauretto, M. (eds) Interdisciplinary Bayesian Statistics. Springer Proceedings in Mathematics & Statistics, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-12454-4_10

Download citation

Publish with us

Policies and ethics