Skip to main content

Nonparametric Bayesian Regression Under Combinations of Local Shape Constraints

  • Conference paper
  • First Online:
Interdisciplinary Bayesian Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 118))

  • 2251 Accesses

Abstract

A nonparametric Bayesian method for regression under combinations of local shape constraints is proposed. The shape constraints considered include monotonicity, concavity (or convexity), unimodality, and in particular, combinations of several types of range-restricted constraints. By using a B-spline basis, the support of the prior distribution is included in the set of piecewise polynomial functions. The first novelty is that, thanks to the local support property of B-splines, many combinations of constraints can easily be considered by identifying B-splines whose support intersects with each constrained region. Shape constraints are included in the coefficients prior using a truncated Gaussian distribution. However, the prior density is only known up to the normalizing constant, which does change with the dimension of coefficients. The second novelty is that we propose to simulate from the posterior distribution by using a reversible jump MCMC slice sampler, for selecting the number and the position of the knots, coupled to a simulated annealing step to project the coefficients on the constrained space. This method is valid for any combination of local shape constraints and particular attention is paid to the construction of a trans-dimensional MCMC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, C.: Bayesian regression under combinations of constraints. J. Stat. Plan. Inference 142, 2672–2687 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartoli, N., Moral, P.D.: Simulation et algoritmes stochastiques. Cepadues-Editions (2001)

    Google Scholar 

  3. de Boor, C.: A Practical Guide to Splines. Springer-Verlag, New-York (2001)

    MATH  Google Scholar 

  4. Delecroix, M., Thomas-Agnan, C.: Spline and Kernel Regression under Shape Restrictions. Wiley, New-York (2000)

    Google Scholar 

  5. Denison, D., Mallick, B., Smith, A.: Automatic Bayesian curve fitting. J. Royal Stat. Soc. (B) 60, 333–350 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. DiMatteo, I., Genovese, C., Kass, R.: Bayesian curve-fitting with free-knot splines. Biometrika 88, 1055–1071 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gelfand, A., Kuo, L.: Nonparametric Bayesian bioassay including ordered polytomous response. Biometrika 78, 355–366 (1991)

    Article  MathSciNet  Google Scholar 

  8. Gelfand, A., Smith, A., Lee, T.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Am. Stat. Assoc. 87, 523–532 (1992)

    Article  MathSciNet  Google Scholar 

  9. Green, P.: Reversible jump Markov chain monte carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  10. Gunn, L., Dunson, D.: A transformation approach for incorporating monotone or unimodal constraints. Biostatistics 6, 434–449 (2005)

    Article  MATH  Google Scholar 

  11. Holmes, C., Heard, N.: Generalized monotonic regression using random change points. Stat. Med. 22, 623–638 (2003)

    Article  Google Scholar 

  12. Ibrahim, J., Chen, M.: Power prior distributions for regression models. Stat. Sci. 15, 46–60 (2000)

    Article  MathSciNet  Google Scholar 

  13. Jeanson, S., Hilgert, N., Coquillard, M., Seukpanya, C., Faiveley, M., Neuveu, P., Abraham, C., Georgescu, V., Fourcassie, P., Beuvier, E.: Milk acidification by Lactococcus lactis is improved by decreasing the level of dissolved oxygen rather than decreasing redox potential in the potential in the milk prior to inoculation. Int. J. Food Microbiol. 131, 75–81 (2009)

    Article  Google Scholar 

  14. Lavine, M., Mockus, A.: A nonparametric Bayes method for isotonic regression. J. Stat. Plan. Inference 46, 235–248 (1995)

    Article  MATH  Google Scholar 

  15. Mammen, E., Thomas-Agnan, C.: Smoothing splines and shape restrictions. Scand. J. Stat. 26, 239–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mammen, E., Marron, J., Turlach, B., Wand, M.: A general projection framework for constrained smoothing. Stat. Sci. 16, 232–248 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meyer, M.: Inference using shape-restricted regression splines. Ann. Appl. Stat. 2, 1013–1033 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mukerjee, H.: Monotone nonparametric regression. Ann. Stat. 16, 741–750 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neelon, B., Dunson, D.: Bayesian isotonic regression and trend analysis. Biometrics 60, 398–406 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ramgopal, P., Laud, P., Smith, A.: Nonparametric Bayesian bioassay with prior constraints on the shape of the potency curve. Biometrika 80, 489–498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ramsay, J.: Estimating smooth monotone functions. J. Royal Stat. Soc. (B) 60, 365–375 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shively, T., Sager, T.: A Bayesian approach to non-parametric monotone function estimation. J. Royal Stat. Soc. (B) 71, 159–175 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shively, T., Walker, S., Damien, P.: Nonparametric function estimation subject to monotonicity, convexity and other shape constraints. J. Econom. 161, 166–181 (2011)

    Article  MathSciNet  Google Scholar 

  24. Tierney, L.: Markov chains for exploring posterior distributions. Ann. Stat. 22, 1701–1762 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Villalobos, M., Wahba, G.: Inequality constrained multivariate smoothing splines with application to the estimation of posterior probability. J. Am. Stat. Assoc. 82, 239–248 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, X.: Bayesian free-knot monotone cubic spline regression. J. Comput. Graphical Stat. 17, 373–387 (2008)

    Article  Google Scholar 

  27. Wright, I., Wegman, E.: Nonparametric regression under qualitative smoothness assumptions. Ann. Stat. 8, 1023–1035 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This article was mainly prepared while the author was working at UMR Mistea of SupAgro Montpellier. I would like to thank Christophe Abraham for his suggestion to study this topic and for his always accurate insights. The author is very grateful to the referees for many useful comments that improved the clarity of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khader Khadraoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khadraoui, K. (2015). Nonparametric Bayesian Regression Under Combinations of Local Shape Constraints. In: Polpo, A., Louzada, F., Rifo, L., Stern, J., Lauretto, M. (eds) Interdisciplinary Bayesian Statistics. Springer Proceedings in Mathematics & Statistics, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-12454-4_11

Download citation

Publish with us

Policies and ethics