Skip to main content

High-Order Discontinuous Galerkin Schemes for Large-Eddy Simulations of Moderate Reynolds Number Flows

  • Chapter
IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 128))

Abstract

In this article, we describe the capabilities of high order discontinuous Galerkin methods at the Institute for Aerodynamics and Gasdynamics for the Large-Eddy Simulation of wall-bounded flows at moderate Reynolds numbers. In these scenarios, the prediction of laminar regions, flow transition and developed turbulence poses a great challenge to the numerical scheme, as overprediction of numerical dissipation can significantly influence the accuracy of the integral quantities. While this increases the burden on the numerical scheme and the LES subgrid model, the moderate Reynolds numbers prevent the occurrence of thin wall boundary layers and allows the resolution of the boundary layer without the need for wall modelling strategies. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high order spectral approximations by using high order ansatz functions up to 12th order, which allows us to resolve the significant features of these flows at a very low number of degrees of freedom. Without the need for any additional filtering, explicit or implicit modelling or artificial dissipation, the high order scheme capture the turbulent flow at the considered Reynolds number range very well.

We apply our approach to standard benchmark test cases for transitional and turbulent flows in internal and external aerodynamics: A well investigated square duct channel at Re τ  = 395, a closed channel configuration with streamwise periodic hills at Re h  = 10,595, a circular cylinder flow at Re D  = 3900 and a transitional airfoil test case at Re = 60,000. We focus on a comparison with established schemes of lower order with explicitly or implicitly added subgrid scale models, while using fewer or approximately the same number of degrees of freedom. We demonstrate that for all computations, we achieve an equal or better match to Direct Numerical Simulation and experimental results, while retaining perfect parallel scaling and achieving very low computing times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. Journal of Computational Physics 131, 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 40, 197–207 (2002)

    Article  MATH  Google Scholar 

  4. Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 40(1-2), 197–207 (2002)

    Article  MATH  Google Scholar 

  5. Benocci, C., Pinelli, A.: The role of the forcing term in the large eddy simulation of equilibrium channel flow. In: Engineering Turbulence Modeling and Experiments, pp. 287–296. Elsevier (1990)

    Google Scholar 

  6. Blackburn, H.M., Schmidt, S.: Large eddy simulation of flow past a circular cylinder. In: Proceedings of 14th Australasian Fluid Mechanics Conference (2001)

    Google Scholar 

  7. Boom, P.D., Zingg, D.W.: Time-accurate flow simulations using an efficient Newton-Krylov-Schur approach with high-order temporal and spatial discretization

    Google Scholar 

  8. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills numerical and experimental study in a wide range of Reynolds numbers. Computers and Fluids 38(2), 433–457 (2009)

    Article  MATH  Google Scholar 

  9. Burgess, N., Mavriplis, D.J.: High-order discontinuous Galerkin methods for turbulent high-lift flows. In: Proceedings of Seventh International Conference on Computational Fluid Dynamics (ICCFD7) (2012)

    Google Scholar 

  10. Carpenter, M., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. Tech. Rep. NASA TM 109111 (1994)

    Google Scholar 

  11. Carton de Wiart, C., Hillewaert, K.: DNS and ILES of transitional flows around a SD7003 using a high order discontinuous Galerkin method. In: Seventh International Conference on Computational Fluid Dynamics (ICCFD7) (2012)

    Google Scholar 

  12. Carton de Wiart, C., Hillewaert, K., Duponcheel, M., Winckelmans, G.: Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. International Journal for Numerical Methods in Fluids (2013)

    Google Scholar 

  13. Casoni, E., Peraire, J., Huerta, A.: One-dimensional shock-capturing for high-order discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids 71(6), 737–755 (2013)

    Article  MathSciNet  Google Scholar 

  14. Catalano, P., Tognaccini, R.: Large Eddy Simulations of the Flow around the SD7003 airfoil. In: AIMETA Conference (2011)

    Google Scholar 

  15. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Google Scholar 

  16. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér 25(3), 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Collis, S.: Discontinuous Galerkin methods for turbulence simulation. In. In: Proceedings of the 2002 Center for Turbulence Research Summer Program, pp. 155–167 (2002)

    Google Scholar 

  18. Collis, S.: The DG/VMS method for unified turbulence simulation. In: 32nd AIAA Fluid Dynamics Conference and Exhibit (2002)

    Google Scholar 

  19. Crivellini, A., D’Alessandro, V., Bassi, F.: High-order discontinuous Galerkin rans solutions of the incompressible flow over a delta wing. Computers and Fluids 88(0), 663–677 (2013)

    Article  MathSciNet  Google Scholar 

  20. Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re D  = 3900. Journal of Wind Engineering and Industrial Aerodynamics 90(10), 1191–1206 (2002)

    Article  Google Scholar 

  21. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fröhlich, J., Rodi, W., Kessler, P., Parpais, S., Bertoglio, J., Laurence, D.: Large eddy simulation of flow around circular cylinders on structured and unstructured grids. In: Hirschel, E.H. (ed.) Numerical Flow Simulation I. NNFM, vol. 66, pp. 319–338. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Galbraith, M., Visbal, M.: Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. AIAA paper 225 (2008)

    Google Scholar 

  24. Gassner, G., Beck, A.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theoretical and Computational Fluid Dynamics 27(3-4), 221–237 (2013)

    Article  Google Scholar 

  25. Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Scientific Computing 33(5), 2560–2579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion. II. Viscous flow equations in multi dimensions. J. Sci. Comp. 34(3), 260–286 (2008)

    Article  MATH  Google Scholar 

  27. Hindenlang, F.J., Gassner, G.J., Munz, C.-D.: Improving the accuracy of discontinuous Galerkin schemes at boundary layers. submitted to International Journal on Numerical Methods for Fluid Dynamics

    Google Scholar 

  28. Kirby, R., Karniadakis, G.: De-aliasing on non-uniform grids: algorithms and applications. Journal of Computational Physics 191, 249–264 (2003)

    Article  MATH  Google Scholar 

  29. Kopriva, D.: Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of Scientific Computing 26(3), 301–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kopriva, D.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, 1st edn. Springer Publishing Company, Incorporated (2009)

    Google Scholar 

  31. Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Re D =3900. Physics of Fluids 12, 403–417 (2000)

    Article  MATH  Google Scholar 

  32. Bricteux, L., Duponcheel, M., Winckelmans, G.: A multiscale subgrid model for both free vortex flows and wall-bounded flows. Physics of Fluids 21 (2009)

    Google Scholar 

  33. Lesaint, P., Raviart, P.: On a finite element method for solving the neutron transport equation. Academic Press (1974)

    Google Scholar 

  34. Lörcher, F., Gassner, G., Munz, C.-D.: An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. Journal of Computational Physics 227(11), 5649–5670 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, X., Karamanos, G.-S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near wake. Journal of Fluid Mechanics 410, 29–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mascarenhas, B.S., Helenbrook, B.T., Atkins, H.L.: Application of p-multigrid to discontinuous Galerkin formulations of the euler equations. AIAA Journal 47(5), 1200–1208 (2009)

    Article  Google Scholar 

  37. Mellen, C.P., Fröhlich, J., Rodi, W.: Large eddy simulations of the flow over periodic hills. In: Deville, M., Owens, R. (eds.) IMACS World Congress (2000)

    Google Scholar 

  38. Meyer, M., Hickel, S., Adams, N.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. International Journal of Heat and Fluid Flow 31(3), 368–377 (2010)

    Article  Google Scholar 

  39. Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA Paper 914, 2007 (2007)

    Google Scholar 

  40. Ol, M.V., McAuliffe, B.R., Hanff, E.S., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. AIAA paper 5149(1), 2005 (2005)

    Google Scholar 

  41. Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Computers and Fluids 39(7), 1083–1094 (2010)

    Article  MATH  Google Scholar 

  42. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Physics of Fluids 20, 85–101 (2008)

    Article  Google Scholar 

  43. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow upt o re τ  = 590. Physics of Fluids 11(4), 943–945 (1999)

    Article  MATH  Google Scholar 

  44. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

    Google Scholar 

  45. Schoenawa, S., Hartmann, R.: Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model. Journal of Computational Physics 262, 194–216 (2014)

    Article  MathSciNet  Google Scholar 

  46. Selig, M.S., Guglielmo, J.J., Broeren, A.P., Giguere, P.: Summary of Low-Speed Airfoil Data, vol. 1. Soartech Publications (1995)

    Google Scholar 

  47. Temmerman, L., Leschziner, M.A., Mellen, C.P., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. International Journal of Heat and Fluid Flow 24(2), 157–180 (2003)

    Article  Google Scholar 

  48. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (June 1999)

    Google Scholar 

  49. Uranga, A., Persson, P.-O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. International Journal for Numerical Methods in Engineering 87(1-5), 232–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. International Journal for Numerical Methods in Fluids 72(8), 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  51. Wurst, M., Kessler, M., Kraemer, E.: Aerodynamic and acoustic analysis of an extruded airfoil with a trailing edge device using detached eddy simulation with a discontinuous galerkin method. In: 21st AIAA Computational Fluid Dynamics Conference (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bolemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolemann, T., Beck, A., Flad, D., Frank, H., Mayer, V., Munz, C.D. (2015). High-Order Discontinuous Galerkin Schemes for Large-Eddy Simulations of Moderate Reynolds Number Flows. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics