Skip to main content

Brain-Machine Interfaces for Assistive Robotics

  • Chapter
Intelligent Assistive Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 106))

Abstract

Motor disability may be caused by many different conditions. The most common one is a cerebrovascular accident (CVA) which occurs when the blood supply to the brain stops [1]. If the length of this interruption is longer than several seconds, brain cells can die causing a permanent damage in the patient. When this damage occurs in the brain areas responsible for motor control, the patients may suffer permanent or temporal loss of mobility, coordination and control of their limbs. Another important cause of motor disability is due to spinal cord injury (SCI), which provokes the total loss of sensibility and movement capability below the level of the injury [2]. In this case, the patient assistance must be purely based on motor substitution, given that it is impossible to perform a rehabilitation procedure. Finally, less frequent illnesses and diseases may cause motor disfunctions, such as cerebral palsy, spina bifida, muscular dystrophy, amyotrophic lateral sclerosis (ALS) or central nervous system diseases such as Parkinson syndrome or Huntington disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung, C.S., Caplan, L.R.: Stroke and other Neurovascular Disorders. In: Textbook of Clinical Neurology, 3rd edn., ch. 45. Elsevier (2007)

    Google Scholar 

  2. Ling, G.S.F.: Traumatic Brain Injury and Spinal Cord Injury. In: Goldmans Cecil Medicine, 24th edn., ch. 406. Elsevier (2011)

    Google Scholar 

  3. Nicolelis, M.A.L.: Actions from thoughts. Nature 409, 403–407 (2001)

    Article  Google Scholar 

  4. Carmena, J.M., et al.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology 1(2), E42 (2003)

    Article  Google Scholar 

  5. Hochberg, L.R., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    Article  Google Scholar 

  6. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.T.: Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101 (2008)

    Article  Google Scholar 

  7. del R. Millan, J., et al.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers in Neuroscience 4, 161 (2010)

    Google Scholar 

  8. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  9. Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurology 7, 1032–1043 (2008)

    Article  Google Scholar 

  10. Birbaumer, N., Cohen, L.G.: Brain-computer interfaces: Communication and restoration of movement in paralysis. J. Physiology 579, 621–636 (2007)

    Article  Google Scholar 

  11. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Rupp, R.: Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomedizinische Technik 51, 57–63 (2006)

    Article  Google Scholar 

  12. Pfurtscheller, G., Müller-Putz, G.R., Scherer, R., Neuper, C.: Rehabilitation with brain-computer interface systems. Computer 41(10), 58–65 (2008)

    Article  Google Scholar 

  13. Mak, J.N., Wolpaw, J.R.: Clinical applications of brain-computer interfaces: Current state and future prospects. IEEE Rev. Biomed. Eng. 2, 187–199 (2009)

    Article  Google Scholar 

  14. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  15. Obermaier, B., Müller, G.R., Pfurtscheller, G.: Virtual keyboard controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 422–426 (2003)

    Article  Google Scholar 

  16. Müller, K.-R., Blankertz, B.: Toward noninvasive brain-computer interfaces. IEEE Signal Process. Mag. 23, 125–128 (2006)

    Article  Google Scholar 

  17. Mugler, E., Bensch, M., Halder, S., Rosenstiel, W., Bogdan, M., Birbaumer, N., Kübler, A.: Control of an internet browser using P300 event-related potential. Int. J. Bioelectromagn. 10, 56–63 (2008)

    Google Scholar 

  18. Sirvent, J.L., Iáñez, E., Úbeda, A., Azorín, J.M.: Visual evoked potential-based brain–machine interface applications to assist disabled people. Expert Systems with Applications 39(9), 7908–7918 (2012)

    Article  Google Scholar 

  19. Sellers, E.W., Donchin, E.: A P300-based brain-computer interface: Initial tests by ALS patients. Clinical Neurophysiology 117(3), 538–548 (2006)

    Article  Google Scholar 

  20. Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics 25(3), 614–627 (2009)

    Article  Google Scholar 

  21. Carlson, T., del R. Millán, J.: Brain-controlled wheelchairs: a robotic architecture. IEEE Robotics and Automation Magazine 20(1), 65–73 (2013)

    Google Scholar 

  22. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroenceph. Clin. Neurophysiol. 70, 510–523 (1998)

    Article  Google Scholar 

  23. Allison, B.Z., Pineda, J.A.: ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Trans. Neural Sys. Rehab. Eng. 11, 110–113 (2003)

    Article  Google Scholar 

  24. Bensch, M., Karim, A.A., Mellinger, J., Hinterberger, T., Tangermann, M., Rosenstiel, W., Birbaumer, N.: Nessi: An EEG-controlled web browser for severely paralyzed patients. Computational Intelligence and Neuroscience (2007)

    Google Scholar 

  25. Eimer, M.: The N2pc component as an indicator of attentional selectivity. Electroencephalography and clinical Neurophysiology 99, 225–234 (1996)

    Article  Google Scholar 

  26. Kiss, M., Van Velzen, J., Eimer, M.: The N2pc component and its links to attention shift and spatially selective visual processing. Psychophysiology 45(2), 240–249 (2008)

    Article  Google Scholar 

  27. Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A.S., McNamara, J., Williams, S.: Neurociencia, 3rd edn. Editorial Medica Panamericana (2006)

    Google Scholar 

  28. Touyama, H., Hirose, M.: Non-target photo images in oddball paradigm improve EEG-based personal identification rates. In: Engineering in Medicine and Biology Society, pp. 4118–4121 (2008)

    Google Scholar 

  29. Luck, S.J., Heinze, H.J., Mangun, G.R., Hillyard, S.A.: Visual event-related potentials index focused attention within bilateral stimulus arrays. Functional Dissociation of P1 and N1 components. Electroencephalography and clinical Neurophysiology 75, 528–542 (1990)

    Article  Google Scholar 

  30. Johnson, G.D., Krusienski, D.J.: Ensemble SWLDA classifiers for the P300 speller. In: Jacko, J.A. (ed.) HCI International 2009, Part II. LNCS, vol. 5611, pp. 551–557. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. American Electroencephalographic Society: American Electroencephalography Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology 8(2), 200–202 (1991)

    Google Scholar 

  32. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparasion of classification tecniques for the P300 Speller. Journal of Neural Engineering 3, 299–305 (2006)

    Article  Google Scholar 

  33. Mirghasemi, H., Fazel-Rezai, R.: Analysis of P300 classifiers in brain computer interface speller. Engineering in Medicine and Biology Society 1, 6205–6208 (2006)

    Google Scholar 

  34. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering 51(6), 1034–1040 (2004)

    Article  Google Scholar 

  35. Iáñez, E., Azorín, J.M., Úbeda, A., Ferrández, J.M., Fernández, E.: Mental tasks-based brain–robot interface. Robotics and Autonomous Systems 58(12), 1238–1245 (2010)

    Article  Google Scholar 

  36. Inoue, S., Akiyama, Y., Izumi, Y., Nishijima, S.: The development of BCI using alpha waves for controlling the robot arm. IEICE Transactions on Communications 91(7), 2125–2132 (2008)

    Article  Google Scholar 

  37. Decety, J., Lindgren, M.: Sensation of effort and duration of mentally executed actions. Scandinavian Journal of Psychology 32, 97–104 (2001)

    Article  Google Scholar 

  38. Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnald, B.: A review of classification algorithms for EEG-based Brain-Computer Interfaces. Journal of Neural Engineering 4(2), 1–13 (2013)

    Article  Google Scholar 

  39. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 4(2), 35–57 (2001)

    Google Scholar 

  40. Wang, L., Xu, G., Wang, J., Yang, S., Wang, J.: Motor imagery BCI research based on sample entropy and SVM. In: International Conference on Electromagnetic Field Problems and Applications, pp. 313–316 (2001)

    Google Scholar 

  41. Arbabi, E., Shamsollahi, M.B., Sameni, R.: Comparison between effective features used for the Bayesian and the SVM classifiers in BCI. In: IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5365–5368 (2001)

    Google Scholar 

  42. Vapnik, V.: Statistical Learning Theory. Ed. Wily, New York (1998)

    MATH  Google Scholar 

  43. Hortal, E., Úbeda, A., Iáñez, E., Planelles, D., Azorín, J.M.: Online classification of two mental tasks using a SVM-based BCI system. In: Neural Engineering Conference 2013, pp. 1307–1310 (2013)

    Google Scholar 

  44. Úbeda, A., Iáñez, E., Badesa, F.J., Morales, R., Azorín, J.M., García, N.M.: Control strategies of an assistive robot using a Brain-Machine Interface. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3553–3558 (2012)

    Google Scholar 

  45. Úbeda, A., Iáñez, E., Azorín, J.M.: Shared control architecture based on RFID to control a robot arm using a spontaneous brain-machine interface. Robotics and Autonomous Systems 61(8), 768–774 (2012)

    Article  Google Scholar 

  46. Iáñez, E., Úbeda, A., Azorín, J.M., Perez-Vidal, C.: Assistive robot application based on an RFID control architecture and a wireless EOG interface. Robotics and Autonomous System 60(8), 1069–1077 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Hortal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hortal, E., Úbeda, A., Iáñez, E., Azorín, J.M. (2015). Brain-Machine Interfaces for Assistive Robotics. In: Mohammed, S., Moreno, J., Kong, K., Amirat, Y. (eds) Intelligent Assistive Robots. Springer Tracts in Advanced Robotics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-12922-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12922-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12921-1

  • Online ISBN: 978-3-319-12922-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics