Skip to main content

Lichens as a Potential Source of Bioactive Secondary Metabolites

  • Chapter
  • First Online:
Lichen Secondary Metabolites

Abstract

Lichens are complex symbiotic associations between fungi and algae which are important constituents of many ecosystems. The production of various unique extracellular secondary metabolites known as lichen substances is the result of this symbiosis. These compounds exist within the thalli and typically form crystals on the surface of the fungal hyphae. Thus far, more than 800 secondary metabolites of lichens have been discovered, most of them being exclusively present in lichens. In recent date, lichens have been taken up for many researches concerning the phytochemical and pharmaceutical applications. Lichens and their secondary metabolites have many pharmaceutical roles, primarily including antimicrobial, antioxidant, antiviral, anticancer, antigenotoxic, anti-inflammatory, analgesic and antipyretic activities. Hence, the present study was undertaken to explain the lichens as the important potential sources of bioactive secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadijan V (1993) The lichen symbiosis. Wiley, New York, pp 1–250

    Google Scholar 

  • Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576

    CAS  PubMed  Google Scholar 

  • Atalay F, Halici MB, Mavi AA et al (2011) Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. Lichen species. Turk J Chem 35:647–661

    CAS  Google Scholar 

  • Bačkor M, Fahselt D (2008) Lichen photobionts and metal toxicity (review article). Symbiosis 46:1–10

    Google Scholar 

  • Bačkorová M, Jendželovský R, Kello M et al (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468

    PubMed  Google Scholar 

  • Bazin MA, Le Lamer AC, Delcros JG et al (2008) Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg Med Chem Lett 16:6860–6866

    CAS  Google Scholar 

  • BeGora MD, Fahselt D (2001) Usnic acid and Atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist 104:134–140

    CAS  Google Scholar 

  • Behera BC, Adawadkar B, Makhija U (2003) Inhibitory activity of xanthine oxidase and superoxide-scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine 10:536–543

    CAS  PubMed  Google Scholar 

  • Behera BC, Adawwadkar B, Makhija U (2004) Capacity of some Graphidaceous lichens to scavenge superoxide and inhibition of tyrosinase and xanthine oxidase activities. Curr Sci 87:83–87

    CAS  Google Scholar 

  • Behera BC, Verma N, Sonone A et al (2008) Antioxidant and antibacterial properties of some cultured lichens. Bioresour Technol 99:776–784

    CAS  PubMed  Google Scholar 

  • Bentley R (1999) Secondary metabolite biosynthesis: the first century. Crit Rev Biotechnol 19:1–40

    CAS  PubMed  Google Scholar 

  • Bézivin C, Tomasi S, Rouaud I et al (2004) Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med 70:874–877

    PubMed  Google Scholar 

  • Bjerke JW, Dahl T (2002) Distribution patterns of usnic acid producing lichens along local radiation gradients in West Greenland. Nova Hedwigia 75:487–506

    Google Scholar 

  • Bjerke JW, Zielke M, Solheim B (2003) Long-term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytol 159:361–367

    Google Scholar 

  • Bjerke JW, Joly D, Nilsen L et al (2004) Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). Polar Biol 27:409–417

    Google Scholar 

  • Bjerke JW, Gwynn-Jones D, Callaghan TV (2005) Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ Exp Bot 53:139–149

    CAS  Google Scholar 

  • Bogo D, de Fatima Cepa Matos M, Honda NK et al (2010) In vitro antitumour activity of orsellinates. Z Naturforsch C 65:43–48

    CAS  PubMed  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287

    CAS  Google Scholar 

  • Brisdelli F, Perilli M, Sellitri D et al (2013) Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res 27:431–437

    CAS  PubMed  Google Scholar 

  • Brunauer G, Hager A, Grube M et al (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem 45:146–151

    CAS  PubMed  Google Scholar 

  • Bucar F, Schneider I, Ogmundsdottir H et al (2004) Antiproliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine 11:602–606

    CAS  PubMed  Google Scholar 

  • Buçukoglu TZ, Albayrak S, Halici MG et al (2013) Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria species from Central Anatolia, Turkey. J Food Process Preserv 37:1103–1110

    Google Scholar 

  • Burlando B, Ranzato E, Volante A et al (2009) Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med 75:607–613

    CAS  PubMed  Google Scholar 

  • Candan M, Yilmaz M, Tay T et al (2006) Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents. Z Naturforsch 61:319–323

    CAS  Google Scholar 

  • Candan M, Yilmaz M, Tay T et al (2007) Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z Naturforsch 62:619–621

    CAS  Google Scholar 

  • Cox DD (2003) A naturalist’s guide to forest plants: an ecology for Eastern North America. Syracuse University Press, Syracuse, NY

    Google Scholar 

  • Crittenden D, Porter N (1991) Lichen-forming fungi: potential sources of novel metabolites. Trends Biotechnol 9:409–414

    CAS  PubMed  Google Scholar 

  • Culberson WL (1970) Chemosystematics and ecology of lichen-forming fungi. Annu Rev Ecol Syst 1:153–170

    CAS  Google Scholar 

  • Culberson CF, Armaleo D (1992) Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp Mycol 16:52–63

    CAS  Google Scholar 

  • Culberson WL, Culberson CF, Johnson A (1983) Genetic and environmental effects on growth and production of secondary compounds in Cladonia cristatella. Biochem Syst Ecol 11:77–84

    CAS  Google Scholar 

  • Culberson CF, Culberson WL (2001) Future directions in lichen chemistry. Bryologist 104:230–234

    CAS  Google Scholar 

  • Ernst-Russell MA, Chai CLL, Hurne AM et al (1999) Revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283

    CAS  Google Scholar 

  • Esimone CO, Grunwald T, Nworu CS et al (2009) Broad spectrum antiviral fractions from the lichen Ramalina farinacea (L.) Ach. Chemotherapy 55:119–126

    CAS  PubMed  Google Scholar 

  • Egan RS (1986) Correlations and non-correlations of chemical variation patterns with lichen morphology and geography. Bryologist 89:99–110

    CAS  Google Scholar 

  • Fazio AT, Adler MT, Bertoni MD et al (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch 62c:543–549

    Google Scholar 

  • Fehrer J, Slavíková-Bayerová Š, Orange A (2008) Large genetic divergence of new, morpho logically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 24:443–458

    Google Scholar 

  • Fessenden RJ, Fessenden JS (1986) Organic chemistry, 3rd edn. Brooks/Cole, Monterey, CA, p 1129

    Google Scholar 

  • Galun M, Shomer-Ilan A (1988) Secondary metabolic products. In: Galun M (ed) CRC handbook of lichenology, vol III. CRC, Boca Raton, FL, pp 3–8

    Google Scholar 

  • Gilbert O (2000) Lichens. Harper Collins, London

    Google Scholar 

  • Gomes AT, Smania AJ, Seidel C et al (2003) Antibacterial activity of orsellinates. Braz J Microbiol 34:194–196

    CAS  Google Scholar 

  • Hager A, Brunauer G, Türk R et al (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120

    CAS  PubMed  Google Scholar 

  • Halama P, Van Haluwin C (2004) Antifungal activity of lichen extracts and lichenic acids. Biocontrol 49:95–107

    CAS  Google Scholar 

  • Hale ME (1973) Growth. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 473–492

    Google Scholar 

  • Hale ME (1974) The biology of lichens. Arnold, London

    Google Scholar 

  • Hale ME (1983) The biology of lichens. Edward Arnold, London

    Google Scholar 

  • Hamada N (1982) The effect of temperature on the content of the medullary depsidone salazinic acid in Ramalina siliquosa. Can J Bot 60:383–385

    Google Scholar 

  • Hamada N (1984) The content of lichen substances in Ramalina siliquosa cultured at various temperatures in growth cabinets. Lichenologist 16:96–98

    Google Scholar 

  • Hamada N (1991) Environmental factors affecting the content of usnic acid in the lichen mycobiont of Ramalina siliquosa. Bryologist 94:57–59

    CAS  Google Scholar 

  • Han D, Matsumaru K, Rettori D et al (2004) Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol 67:439–451

    CAS  PubMed  Google Scholar 

  • Hidalgo ME, Fernández E, Quilhot W et al (1994) Antioxidant activity of depsides and depsidones. Phytochemistry 37:1585–1587

    CAS  PubMed  Google Scholar 

  • Hollosy F, Meszaros G, Bokonyi G et al (2000) Cytostatic, cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in human tumor cells. Anticancer Res 20:4563–4570

    CAS  PubMed  Google Scholar 

  • Honda NK, Pavan FR, Coelho RG et al (2010) Antimycobacterial activity of lichen substances. Phytomedicine 17:328–332

    CAS  PubMed  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbioses. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    CAS  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    CAS  PubMed  Google Scholar 

  • Huneck S, Himmelreich U (1995) Arthogalin, a cyclic depsipeptide from the lichen Arthothelium galapagoense. Z Naturforsch 50B:1101–1103

    Google Scholar 

  • Ingolfsdottir K, Chung GAC, Skulason VG et al (1998) Antimycobacterial activity of lichens metabolites in vitro. Eur J Pharm Sci 6:141–144

    CAS  PubMed  Google Scholar 

  • Ishikawa H, Nishimuro S, Watanbe T et al (1997) Use of ursolic acid for the manufacture of a medicament for suppressing metastasis. European Patent Appl EP774255

    Google Scholar 

  • Karunaratne V (1999) Lichen substances: biochemistry, ecological role and economic uses. Ceylon J Sci (Phys Sci) 6:13–28

    Google Scholar 

  • Karunaratne V, Bombuwela K, Kathirgamanathar S et al (2005) Lichens: a chemically important biota. J Natl Sci Found Sri Lanka 33:169–186

    Google Scholar 

  • Kinoshita Y (1993) The production of lichen substances for pharmaceutical use by lichen tissue culture. Nippon Paint, Osaka

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW et al (eds) (2008) Dictionary of the fungi, 10th edn. CAB, Wallingford, Oxon, UK

    Google Scholar 

  • Kosanić M, Ranković B, Sukdolak S (2010) Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr J Microbiol Res 4:885–890

    Google Scholar 

  • Kosanić M, Manojlović N, Janković S et al (2013) Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118

    PubMed  Google Scholar 

  • Kosanić M, Ranković B, Stanojković T et al (2014) Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT Food Sci Technol 58:518–525

    Google Scholar 

  • Kumar KC, Muller K (1999) Lichen metabolites, 2: antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Prod 62:821–823

    CAS  PubMed  Google Scholar 

  • Lauterwein M, Oethinger M, BeIsner K et al (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (−)-usnic acid and against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrey JD (1986) A biological review of lichen substances. Bryologist 89:111–122

    CAS  Google Scholar 

  • Leuckert C, Ahmadjian V, Culberson CF et al (1990) Xanthones and depsidones of the lichen Lecanora dispersa in nature and of its mycobiont in culture. Mycologia 82:370–378

    CAS  Google Scholar 

  • Lohézic-Le Dévéhat F, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Nat Prod 70:1218–1220

    PubMed  Google Scholar 

  • Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical-scavenging activity of orsellinates. Chem Pharm Bull 56:1551–1554

    CAS  PubMed  Google Scholar 

  • Lumbsch HT (1998) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 345–387

    Google Scholar 

  • Manojlović N, Ranković B, Kosanić M et al (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172

    PubMed  Google Scholar 

  • Marques J (2013) A framework for assessing the vulnerability of schist surfaces to lichen-induced weathering in the Upper Douro region (NE Portugal). Directores: Rubim Almeida y Graciela Paz. Universidad: Universidade de Porto. Fecha de lectura

    Google Scholar 

  • Martins MCB, Gonçalves de Lima MJ, Silva FP et al (2010) Cladia aggregata (lichen) from Brazilian Northeast, chemical characterization and antimicrobial activity. Braz Arch Biol Technol 53:115–122

    CAS  Google Scholar 

  • Mattsson JE (1994) Lichen proteins, secondary products and morphology: a review of protein studies in lichens with special emphasis on taxonomy. J Hattori Bot Lab 76:235–248

    Google Scholar 

  • Mayer M, O’Neill MA, Murray KE et al (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16:805–809

    CAS  PubMed  Google Scholar 

  • Melo MG, Dos Santos JP, Serafini MR et al (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 25:462–468

    CAS  PubMed  Google Scholar 

  • Moe R (1997) Verrucaria tavaresiae sp. nov., a marine lichen with a brown algal photobiont. Bull Calif Lichen Soc 4:7–11

    Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites. Z Naturforsch C 65:157–173

    PubMed  Google Scholar 

  • Nash TH (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash TH (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Nelsen MP, Gargas A (2008) Phylogenetic distribution and evolution of secondary metabolites in the lichenized fungal genus Lepraria (Lecanorales: Stereocaulaceae). Nova Hedwigia 86:115–131

    Google Scholar 

  • Nordin A, Tibell L, Owe-Larsson B (2007) A preliminary phylogeny of Aspicilia in relation to morphological and secondary product variation. Bibl Lichenol 96:247–266

    Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H et al (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacine-induced gastric ulcer in rats. J Ethnopharmacol 1:59–65

    Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    CAS  PubMed  Google Scholar 

  • Okuyama E, Umeyama K, Yamazaki M et al (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    CAS  PubMed  Google Scholar 

  • Osawa K, Marsumoto T, Yasuda H et al (1991) The inhibitory effect of plant extracts on the collagenolytic activity and cytotoxicity of human gingival fibroblasts by Porphyromonas gingivalis crude enzyme. Bull Tokyo Dent Coll 32:1–7

    CAS  PubMed  Google Scholar 

  • Paracer S, Ahmadijan V (2000) Symbiosis: an introduction to biological associations. Oxford University, Oxford, 291 pages

    Google Scholar 

  • Paudel B, Bhattarai HD, Lee JS et al (2008) Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother Res 22:1269–1271

    CAS  PubMed  Google Scholar 

  • Paudel B, Bhattarai HD, Lee HK et al (2010) Antibacterial activities of Ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. Z. Naturforsch C 65:34–38

    CAS  Google Scholar 

  • Perry NB, Benn MH, Brennan NJ et al (1999) Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens. Lichenologist 31:627–636

    Google Scholar 

  • Piovano M, Garbarino JA, Giannini FA et al (2002) Evaluation of antifungal and antibacterial activities of aromatic metabolites from lichens. Bol Soc Chil Quím 47:235–240

    CAS  Google Scholar 

  • Ramos DF, Almeida da Silva PE (2010) Antimycobacterial activity of usnic acid against resistant and susceptible strains of Mycobacterium tuberculosis and non-tuberculous mycobacteria. Pharm Biol 48:260–263

    CAS  PubMed  Google Scholar 

  • Ranković B, Mišić M (2008) The antimicrobial activity of the lichen substances of the lichens Cladonia Furcata, Ochrolechia Androgyna, Parmelia caperata and Parmelia Conspersa. Biotechnol Biotechnol Equip 22:1013–1016

    Google Scholar 

  • Ranković B, Mišić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Microbiol Biotechnol 24:1239–1242

    Google Scholar 

  • Ranković B, Kosanić M, Manojlovic N et al (2014) Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res 23:408–416

    Google Scholar 

  • Řezanka T, Dembitsky V (1999) Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry 51:963–968

    PubMed  Google Scholar 

  • Řezanka T, Guschina IA (1999) Brominated depsidones from Acarospora gobiensis, a lichen of Central Asia. J Nat Prod 62:1675–1677

    Google Scholar 

  • Řezanka T, Guschina IA (2000) Glycosidic compounds of murolic, protocontipatic and allo-murolic acids from lichens of Central Asia. Phytochemistry 54:635–645

    PubMed  Google Scholar 

  • Řezanka T, Guschina IA (2001a) Glycosides esters from lichens of Central Asia. Phytochemistry 58:509–516

    PubMed  Google Scholar 

  • Řezanka T, Guschina IA (2001b) Further glucosides of lichens’ acids from Central Asian lichens. Phytochemistry 56:181–188

    PubMed  Google Scholar 

  • Řezanka T, Guschina IA (2001c) Macrolactones glycosides of three lichen acids from Acarospora gobiensis, a lichen of Central Asia. Phytochemistry 58:1281–1287

    PubMed  Google Scholar 

  • Řezanka T, Jáchymová J, Dembitsky VM (2003) Prenylated xanthone glucosides from Ural’s lichen Umbilicaria proboscidea. Phytochemistry 62:607–612

    PubMed  Google Scholar 

  • Řezanka T, Temina M, Hanuš L et al (2004) The tornabeatins, four tetrahydro-2-furanone derivatives from the lichenized ascomycete Tornabea scutellifera (With.) J.R. Laundon. Phytochemistry 65:2605–2612

    PubMed  Google Scholar 

  • Richardson DHS (1991) Lichens and man. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 187–210

    Google Scholar 

  • Richardson DHS (1992) Pollution monitoring with lichens, Naturalist’s handbook 19. Richmond Publishing, Richmond, VA

    Google Scholar 

  • Rubio C, Fernández E, Hidalgo ME et al (2002) Effects of solar UV-B radiation in the accumulation of rhizocarpic acid in a lichen species from alpine zones of Chile. Bol Soc Chil Quim 47:67–72

    CAS  Google Scholar 

  • Rundel PW (1978) The ecological role of secondary lichen substances. Biochem Syst Ecol 6:157–170

    CAS  Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    CAS  PubMed  Google Scholar 

  • Shukla V, Upreti DK, Bajpai R (2013) Lichens to biomonitor the environment. Springer, India

    Google Scholar 

  • Sisodia R, Geol M, Verma S et al (2013) Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat Prod Res 27:2235–2239

    CAS  PubMed  Google Scholar 

  • Solhaug KA, Lind M, Nybakken L et al (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora 204:40–48

    Google Scholar 

  • Stephenson NL, Rundel PW (1979) Quantitative variation and the ecological role of vulpinic acid and atranorin in the thallus of Letharia vulpina. Biochem Syst Ecol 7:263–267

    CAS  Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    PubMed  Google Scholar 

  • Stocker-Wörgötter E, Elix JA (2002) Secondary chemistry of cultured mycobionts: formation of a complete chemosyndrome by the lichen fungus of Lobaria spathulata. Lichenologist 34:351–359

    Google Scholar 

  • Sundset MA, Kohn A, Mathiesen SD et al (2008) Eubacterium rangiferina, a novel usnic acid resistant bacterium from the reindeer rumen. Naturwissensch 95:741–749

    CAS  Google Scholar 

  • Swanson A, Fahselt D, Smith D (1996) Phenolic levels in Umbilicaria Americana in relation to enzyme polymorphism, altitude and sampling date. Lichenologist 28:331–339

    Google Scholar 

  • Tay T, Türk AO, Yılmaz M et al (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Z Naturforsch 59:384–388

    CAS  Google Scholar 

  • Torres A, Hochberg M, Pergament I et al (2004) A new UV-B absorbing mycosporine with photoprotective activity from the lichenized ascomycetes Collema cristatum. Eur J Biochem 271:780–784

    CAS  PubMed  Google Scholar 

  • Turk AO, Yilmaz M, Kivanc M et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch 58:850–854

    Google Scholar 

  • Turk H, Yilmaz M, Tay T et al (2006) Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z Naturforsch C 61:499–507

    CAS  PubMed  Google Scholar 

  • Verma N, Behera BC, Parizadeh H et al (2011) Bactericidal activity of some lichen secondary compounds of Cladonia ochrochlora, Parmotrema nilgherrensis and Parmotrema sancti-angelii. Int J Drug Dev Res 3:222–232

    CAS  Google Scholar 

  • Verma N, Behera BC, Joshi A (2012) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacifica to enhance the production of antioxidant metabolites. Folia Microbiol 57:107–114. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=19&SID=Q2Oag52bOM1I8b7EOmJ&page=6&doc=58

  • Vijayakumar CS, Viswanathan S, Reddy MK et al (2000) Anti-inflammatory activity of (+) usnic acid. Fitoterapia 71:564–566

    CAS  PubMed  Google Scholar 

  • Waring B (2008) Light exposure affects secondary compound diversity in lichen communities in Monteverde, Costa Rica. PennScience 6:11–13

    Google Scholar 

  • Yamamoto Y, Mizuguchi R, Yamada Y (1985) Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Higuchi M et al (1993) Using lichen tissue cultures in modern biology. Bryologist 96:384–393

    Google Scholar 

  • Yamamoto Y, Kinoshita Y, Matsubara H et al (1998) Screening of biological activities and isolation of biological-active compounds from lichens. Recent Res Dev Phytochem 2:23–34

    CAS  Google Scholar 

  • Yilmaz M, Türk AO, Tay T et al (2004) The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch C 59:249–254

    CAS  PubMed  Google Scholar 

  • Yoshimura I, Kurokawa T, Kinoshita Y et al (1994) Lichen substances in cultured lichens. J Hattori Bot Lab 7:249–261

    Google Scholar 

  • Zhou OM, Guo SY, Huang MR et al (2006) A study of the genetic variability of Rhizoplaca chrysoleuca using DNA sequences and secondary metabolic substances. Mycologia 98:57–67

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav Ranković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ranković, B., Kosanić, M. (2015). Lichens as a Potential Source of Bioactive Secondary Metabolites. In: Ranković, B. (eds) Lichen Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-319-13374-4_1

Download citation

Publish with us

Policies and ethics