Skip to main content

Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Abstract

Currently, microbiological proteases, along with lipases, are the most significant enzymes for biotechnology. They are produced in great quantity and since they are qualitatively diversified, they can be successfully applied in various branches of industry, including medicine. For several decades, the number as well as the significance of studies on extremophilic proteases have been growing. Extremophilic proteases are isolated from extremophiles which, given their unique kinetic and structural adaptations, can be used at low and high temperatures and in extreme environments (alkaline, acidic, saline). These enzymes have already enriched the range of commercial proteases and the studies on their properties in relation to their structural features stimulated a rational engineering of conventional proteases, aimed at enhancing their ability to adapt to specific conditions. In the chapter below, we characterized selected representatives of this most significant, in terms of economy, group of extremophilic proteases and discussed possible directions for their application in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akolkar AV, Desai AJ (2010) Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1(1). Res Microbiol 161(5):355–362

    Article  CAS  PubMed  Google Scholar 

  • Akolkar AV, Deshpande GM, Raval KN, Durai D, Nerurkar AS, Desai AJ (2008) Organic solvent tolerance of Halobacterium sp. SP1(1) and its extracellular protease. J Basic Microbiol 48(5):421–425

    Article  CAS  PubMed  Google Scholar 

  • Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109(1):44–53

    CAS  PubMed  Google Scholar 

  • Alam SI, Dube S, Reddy GSN, Bhattacharya BK, Shivaji S, Singh L (2005) Purification and characterization of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antarctica. Enzyme Microb Technol 36(5–6):824–831

    Article  CAS  Google Scholar 

  • Alam S, Dube S, Agarwal M, Singh L (2006) Purification and characterization of an extracellular protease produced by psychrotolerant Clostridium sp. LP3 from lake sediment of Leh, India. Can J Microbiol 52(12):1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Amoozegar MA, Fatemi ZA, Karbalaei-Heidari HR, Razavi MR (2007) Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiol Res 162(4):369–377

    Article  CAS  Google Scholar 

  • Aqel H, Al-Quadan F, Yousef TK (2012) A novel neutral protease from thermophilic Bacillus strain HUTBS62. J Biosci Biotechnol 1(2):117–123

    Google Scholar 

  • Arulmani M, Aparanjini K, Vasanthi K, Arumugam P, Arivuchelvi M, Kalaichelvan PT (2007) Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World J Microbiol Biotechnol 23(4):475–481

    Article  CAS  Google Scholar 

  • Baghel VS, Tripathi RD, Ramteke RW, Gopal K, Dwivedi S, Jain RK, Rai UN, Singh SN (2005) Psychrotrophic proteolytic bacteria from cold environments of Gangotri glacier, Western Himalaya, India. Enzyme Microb Technol 36(5–6):654–659

    Article  CAS  Google Scholar 

  • Bakhtiar S, Andersson MM, Gessesse A, Mattiasson B, Hatti-Kaul R (2002) Stability characteristics of a calcium-independent alkaline protease from Nesterenkonia sp. Enzyme Microb Technol 32(5):525–531

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37:D26–D31

    Article  CAS  PubMed  Google Scholar 

  • Biver S, Portetelle D, Vandenbol M (2013) Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. SpringerPlus 2:410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blumentals II, Robinson AS, Kelly RM (1990) Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56(7):1992–1998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15(1):183–193

    Article  CAS  PubMed  Google Scholar 

  • Cannio R, Catara G, Fiume I, Balestrieri M, Rossi M, Palmieri G (2010) Identification of a cell-bound extracellular protease overproduced by Sulfolobus solfataricus in peptide-rich media. Protein Pept Lett 17(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Capiralla H, Hiroi T, Hirokawa T, Maeda S (2002) Purification and characterization of a hydrophobic amino acid-specific endopeptidase from Halobacterium halobium S9 with potential application in debittering of protein hydrolysates. Process Biochem 38(4):571–579

    Article  CAS  Google Scholar 

  • Carter P, Nilsson B, Burnier JP, Burdick D, Wells JA (1989) Engineering subtilisin BPN’ for site-specific proteolysis. Proteins: Struct Funct Bioinf 6(3):240–248

    Article  CAS  Google Scholar 

  • Catara G, Ruggiero G, La Cara F, Digilio FA, Capasso A, Rossi M (2003) A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1: biochemical properties, cloning, and expression. Extremophiles 7(5):391–399

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez Croocker P, Sako Y, Uchida A (1999) Purification and characterization of an intracellular heat-stable proteinase (pernilase) from the marine hyperthermophilic archaeon Aeropyrum pernix K1. Extremophiles 3(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci U S A 90(12):5618–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Zhang YZ, Gao PJ, Luan XW (2003) Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar Biol 143(5):989–993

    Article  CAS  Google Scholar 

  • Choi IG, Bang WG, Kim SH, Yu YG (1999) Extremely thermostable serine-type protease from Aquifex pyrophilus. Molecular cloning, expression, and characterization. J Biol Chem 274(2):881–888

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Daniel RM (1982) Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile. Biochim Biophys Acta 705(3):293–305

    Article  CAS  PubMed  Google Scholar 

  • Damare S, Raghukumar C, Muraleedharan U, Raghukumar S (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol 39(2):172–181

    Article  CAS  Google Scholar 

  • Dastager SG, Dayanand A, Li WJ, Kim CJ, Lee JC, Park DJ, Tian XP, Raziuddin QS (2008) Proteolytic activity from an alkali-thermotolerant Streptomyces gulbargensis sp. nov. Curr Microbiol 57(6):638–642

    Article  CAS  PubMed  Google Scholar 

  • Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J Biol Chem 269(26):17448–17453

    CAS  PubMed  Google Scholar 

  • De Azeredo L, Freire D, Soares R, Leite S, Coelho R (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme Microb Technol 34(3–4):354–358

    Article  CAS  Google Scholar 

  • De Castro RE, Maupin-Furlow JA, GimĂ©nez MI, Herrera Seitz MK, SĂĄnchez JJ (2005) Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 30(1):17–35

    Article  CAS  Google Scholar 

  • Deetz JS, Rozzell JD (1988) Enzyme-catalysed reactions in non-aqueous media. Trends Biotechnol 6(1):15–19

    Article  CAS  Google Scholar 

  • Deng A, Wu J, Zhang Y, Zhang G, Wen T (2010) Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour Technol 101(18):7100–7106

    Article  CAS  Google Scholar 

  • Dib R, Chobert JM, Dalgalarrondo M, Barbier G, HaertlĂ© T (1998) Purification, molecular properties and specificity of a thermoactive and thermostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem. FEBS Lett 431(2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Dixit VS, Pant A (2000) Comparative characterization of two serine endopeptidases from Nocardiopsis sp. NCIM 5124. Biochim Biophys Acta 1523(2–3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Doddapaneni KK, Tatineni R, Vellanki RV, Gandu B, Panyala NR, Chakali B, Mangamoori LN (2007) Purification and characterization of two novel extra cellular proteases from Serratia rubidaea. Process Biochem 42(8):1229–1236

    Article  CAS  Google Scholar 

  • Dodia MS, Rawal CM, Bhimani HG, Joshi RH, Khare SK, Singh SP (2008) Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J Ind Microbiol Biotechnol 35(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48(13):270–282. doi:10.1016/j.bej.2009.09.009

    Article  CAS  Google Scholar 

  • Dozie IN, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J Microbiol Biotechnol 10(5):563–567

    Article  CAS  PubMed  Google Scholar 

  • Eggen R, Geerling A, Watts J, de Vos WM (1990) Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71(1–2):17–20

    Article  CAS  Google Scholar 

  • Elmore DT (2002) Peptide synthesis. In: Barret GC, Davies JS (eds) Amino acids, peptides and proteins: Volume 33. RSC Publishing, UK, pp. 83–134

    Google Scholar 

  • Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260(11):6518–6521

    CAS  PubMed  Google Scholar 

  • Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60(4):648–662

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica. Article ID 512840

    Google Scholar 

  • Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2(1):15–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman SA, Peek K, Prescott M, Daniel R (1993) Characterization of a chelator-resistant protease from Thermus strain Rt4A2. Biochem J 295(Pt 2):463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 31(8–9):845–856. doi:10.1080/09593331003762807

    Article  CAS  PubMed  Google Scholar 

  • Fusek M, Lin XL, Tang J (1990) Enzymic properties of thermopsin. J Biol Chem 265(3):1496–1501

    Google Scholar 

  • George S, Raju V, Krishnan MRV, Subramanian TV, Jayaraman K (1995) Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem 30(5):457–462

    Article  CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzym Microb Technol 32(5):519–524

    Article  CAS  Google Scholar 

  • GimĂ©nez MI, Studdert CA, SĂĄnchez JJ, De Castro RE (2000) Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4(3):181–188

    Article  PubMed  Google Scholar 

  • Giri SS, Sukumaran V, Sen SS, Oviya M, Banu BN, Jena PK (2011) Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil. J Microbiol 49(3):455–461

    Article  CAS  PubMed  Google Scholar 

  • Glass JD (1981) Enzymes as reagent in the synthesis of peptides. Enzyme Microb Technol 3(1):2–8

    Article  CAS  Google Scholar 

  • Gohel SD, Singh SP (2012) Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salt-tolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. J Chromatogr B Analyt Technol Biomed Life Sci 889–890:61–68

    Article  PubMed  CAS  Google Scholar 

  • Gohel SD, Singh SP (2013) Characteristics and thermodynamics of a thermostable protease from a salt-tolerant alkaliphilic actinomycete. Int J Biol Macromol 56:20–27

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    CAS  Google Scholar 

  • Graziano G, Merlino A (2014) Molecular bases of protein halotolerance. Biochim Biophys Acta 1844(4):850–858

    Article  CAS  PubMed  Google Scholar 

  • GrĂžn H, Bech LM, Branner S, Breddam K (1990) A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of side-directed mutagenesis and chemical modification. Eur J Biochem 194(3):897–901

    Article  PubMed  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial application. Appl Microbiol Biotechnol 59(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatogr A 1075(1–2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Halling PJ (1994) Thermodynamic prediction for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16(3):178–206

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Keshavarz T, Evans CS (1999) Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J Chem Technol Biotechnol 74(1):5–8

    Article  CAS  Google Scholar 

  • Hao JH, Sun M (2015) Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215. Appl Biochem Biotechnol 175(2):715–722

    Article  CAS  PubMed  Google Scholar 

  • Hasan AKMQ, Tamiya E (2001) Cold-active protease CP70. Patent US 6200793

    Google Scholar 

  • Hasbay Ifrij I, Ogel ZB (2002) Production of neutral and alkaline extracellular proteases by the thermophilic fungus, Scytalidium thermophilum, grown on microcrystalline cellulose. Biotechnol Lett 24(13):1107–1110

    Article  CAS  Google Scholar 

  • Hiraga K, Nishikata Y, Namwong S, Tanasupawat S, Takada K, Oda K (2005) Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci Biotechnol Biochem 69(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hui Z, Doi H, Kanouchi H, Matsuura Y, Mohri S, Nonomura Y, Oka T (2004) Alkaline serine protease produced by Streptomyces sp. degrades PrP(Sc). Biochem Biophys Res Commun 321(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Huston A, Methe B, Deming J (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol 70(6):3321–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol 45(3):217–222

    Article  CAS  PubMed  Google Scholar 

  • Iqbal I, Aftab MN, Afzal M, Ur-Rehman A, Aftab S, Zafat A, Ud-Din Z, Khuharo AR, Iqbal J, Ul-Haq I (2015) Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus. J Basic Microbiol 55(2):160–171

    Article  CAS  PubMed  Google Scholar 

  • Izotova LS, Strongin AY, Chekulaeva LN, Sterkin VE, Ostoslavskaya VI, Lyublinskaya LA, Timokhina EA, Stepanov VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155(2):826–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HJ, Kim BC, Pyun YR, Kim YS (2002) A novel subtilisin-like serine protease from Thermoanaerobacter yonseiensis KB-1: its cloning, expression, and biochemical properties. Extremophiles 6(3):233–243

    Article  CAS  PubMed  Google Scholar 

  • Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90(9):1291–1305

    Article  CAS  PubMed  Google Scholar 

  • Jaouadi B, Ellouz-Chaabouni S, Ben Ali M, Ben Messaoud E, Naili B, Dhouib A, Bejar S (2009) Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB). Biotechnol Bioprocess Eng 14:503–512

    Article  CAS  Google Scholar 

  • Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zarai N, Bejar S (2010a) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour Technol 101(21):8361–8369

    Article  CAS  PubMed  Google Scholar 

  • Jaouadi B, Aghajari N, Haser R, Bejar S (2010b) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92(4):360–369

    Article  CAS  PubMed  Google Scholar 

  • Joo HS, Chang CS (2005) Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J Appl Microbiol 98(2):491–497

    Article  CAS  PubMed  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol 95(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Satyanarayana T (2013a) Biotechnology of cold-active proteases. Biology 2(2):755–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi S, Satyanarayana T (2013b) Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol 131:76–85

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41(4):333–350

    Article  CAS  Google Scholar 

  • Kamekura M, Seno Y (1990) A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem Cell Biol 68(1):352–359

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Seno Y, Dyall-Smith ML (1996) Halolysin R4, a serine proteinase from the halophilic archaeon Haloferax mediterranei; gene cloning, expression and structural studies. Biochim Biophys Acta 1294(2):159–167

    Article  PubMed  Google Scholar 

  • Karan R, Khare SK (2010) Purification and characterization of a solvent-stable protease from Geomicrobium sp. EMB2. Environ Technol 31(10):1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Singh SP, Kapoor S, Khare SK (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28(2):138–145

    Article  CAS  Google Scholar 

  • Karbalaei-Heidari HR, Shahbazi M, Absalan G (2013) Characterization of a novel organic solvent tolerant protease from a moderately halophilic bacterium and its behavior in ionic liquids. Appl Biochem Biotechnol 170(3):573–586

    Article  CAS  PubMed  Google Scholar 

  • Khan F (2013) New microbial proteases in leather and detergent industries. Innov Res Chem 1(1):1–6

    CAS  Google Scholar 

  • Kikani BA, Shukla RJ, Singh SP (2010) Biocatalytic potential of thermophilic bacteria and actinomycetes. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, Spain, pp 1000–1007

    Google Scholar 

  • Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55(3):471–479

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Lei XG (2005) Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris. Appl Microbiol Biotechnol 68(3):355–359

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):2482–2488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Muraya K, Araki Y, Matsuoka H, Nakanishi K, Matsuno R (1990a) Synthesis peptides consisting of essential amino acids by a reactor system using three proteinases and an organic solvent. Agric Biol Chem 54(12):3331–3333

    CAS  PubMed  Google Scholar 

  • Kimura Y, Nakanishi K, Matsuno R (1990b) Enzymatic synthesis of the precursor of Leu-enkephalin in water-immiscible organic solvent systems. Enzyme Microb Technol 12(4):273–280

    Article  Google Scholar 

  • Kimura Y, Yoshida T, Muraya K, Nakanishi K, Matsuno R (1990c) Continuous synthesis of a tripeptide by successive condensation and transesterification catalyzed by two immobilized proteinases in organic solvent. Agric Biol Chem 54(6):1433–1440

    CAS  PubMed  Google Scholar 

  • Klein UJ, Prykhodzka A, Cerovsky V (2000) The applicability of subtilisin Carlsberg in peptide synthesis. J Pept Sci 6(11):541–549

    Article  CAS  PubMed  Google Scholar 

  • Kleine R (1982) Properties of thermitase, a thermostable serine protease from Thermoactinomyces vulgaris. Acta Biol Med Ger 41(1):89–102

    CAS  PubMed  Google Scholar 

  • Klingeberg M, Galunsky B, Sjoholm C, Kasche V, Antranikian G (1995) Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl Environ Microbiol 61(8):3098–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight ZA, Garrison JL, Chan K, King DS, Shokat KM (2007) A remodelled protease that cleaves phosphotyrosine substrates. J Am Chem Soc 129(38):11672–11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43(3):473–481

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Lu J, Li Z, Hung VS, Kurata A, Hatada Y, Takai K, Ito S, Horikoshi K (2007) Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl Microbiol Biotechnol 75(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kuddus M, Ramteke PW (2011) Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res 5(7):809–816

    Article  CAS  Google Scholar 

  • Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38(4):330–338

    Article  CAS  PubMed  Google Scholar 

  • Kudrya VA, Simonenko IA (1994) Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Appl Microbiol Biotechnol 41(5):505–509

    Article  CAS  Google Scholar 

  • KĂŒhn D, DĂŒrrschmidt P, Mansfeld J, Ulbrich-Hofmann R (2002) Boilysin and thermolysin in dipeptide synthesis: a comparative study. Biotechnol Appl Biochem 36(Pt 1):71–76

    Article  PubMed  Google Scholar 

  • Kullmann W (1982) Protease-catalyzed peptide bond formation: application to synthesis of the COOH-terminal octapeptide of cholecystokinin. Proc Natl Acad Sci U S A 79(9):2840–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68(6):726–736

    Google Scholar 

  • Kumar D, Savitri, Thakur N, Verma R, Bhalla TC (2008) Microbial proteases and application as laundry detergent additive. Res J Microbiol 3(12):661–672

    Google Scholar 

  • Kumar CG, Tiwari MP, Jany KD (1999) Novel alkaline serine proteases from alkalophilic Bacillus spp.: purification and some properties. Process Biochem 34(5):441–449

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Lagzian M, Asoodeh A (2012) An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64. Int J Biol Macromol 51(5):960–967

    Article  CAS  PubMed  Google Scholar 

  • Lama L, Romano I, Calandrelli V, Nicolaus B, Gambacorta A (2005) Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res Microbiol 156(4):478–484

    Article  CAS  PubMed  Google Scholar 

  • Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, Shih JC (2003) Enzymatic degradation of prion protein in brain team stem from infected cattle and sheep. J Infect Dis 188(11):1782–1789

    Article  CAS  PubMed  Google Scholar 

  • Li AN, Li DC (2009) Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 106(2):369–380

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Zhou XX, Lu P (2005) Structural features of thermozymes. Biotechnol Adv 23(4):271–281

    Article  CAS  PubMed  Google Scholar 

  • Li AN, Ding AY, Chen J, Liu SA, Zhang M, Li DC (2007) Purification and characterization of two thermostable proteases from the thermophilic fungus Chaetomium thermophilum. J Microbiol Biotechnol 17(4):624–631

    Google Scholar 

  • Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases:present and future. FEBS Lett 587(8):1155–1163

    Google Scholar 

  • Lin X, Tang J (1990) Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius. J Biol Chem 265(3):1490–1495

    CAS  PubMed  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38(10):1635–1647

    Article  CAS  PubMed  Google Scholar 

  • LĂŒ J, Wu X, Jiang Y, Cai X, Huang L, Yang Y, Wang H, Zeng A, Li A (2014) An extremophile Microbacterium strain and its protease production under alkaline conditions. J Basic Microbiol 54(5):378–385

    Article  PubMed  CAS  Google Scholar 

  • Majeed T, Tabassum R, Orts WJ, Lee CC (2013) Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease. Sci World J. Article ID 396156

    Google Scholar 

  • Manikandan M, PaĆĄić L, Kannan V (2009) Purification and biological characterization of a halophilic thermostable protease from Haloferax lucentensis VKMM 007. World J Microbiol Biotechnol 25(12):2247–2256

    Article  CAS  Google Scholar 

  • Marcy RM, Engelhardt TC, Upadhyay JM (1984) Isolation, partial characterization, and some properties of protease I from a thermophilic mold Thermoascus aurantiacus var. levisporus. Mycopathologia 87(1–2):57–65

    Article  CAS  Google Scholar 

  • Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H (2005) A cold-active extracellular metalloprotease from Pedobacter cryoconitis - production and properties. Res Microbiol 156(4):499–505

    Article  CAS  PubMed  Google Scholar 

  • Martinez R, Jakob F, Tu R, Siegert P, Maurer KH, Schwaneberg U (2013) Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 110(3):711–720

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa H, Tokugawa K, Hamaoki M, Mizoguchi M, Taguchi H, Terada I, Kwon ST, Ohta T (1988) Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Eur J Biochem 171(3):441–447

    Article  CAS  PubMed  Google Scholar 

  • Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15(4):330–334

    Article  CAS  PubMed  Google Scholar 

  • Mei HC, Liaw YC, Li YC, Wang DC, Takagi H, Tsai YC (1998) Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Protein Eng 11(2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Mitsuiki S, Sakai M, Moriyama Y, Goto M, Furukawa K (2002) Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 66(1):164–167

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297(4):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Moreno ML, Garcia MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol Ecol 68(1):59–71

    Article  CAS  Google Scholar 

  • Morihara K, Oka T (1981) Peptide bond synthesis catalyzed by subtilisin, papain, and pepsin. J Biochem 89(2):385–395

    CAS  PubMed  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60(12):4559–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi MF, Deobagkar D, Deobagkar D (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD 100. Electron J Biotechnol 8(2):197–203

    Article  CAS  Google Scholar 

  • Naki D, Paech C, Ganshaw G, Schellenberger V (1998) Selection of a subtilisin-hyperproducing Bacillus in a highly structured environment. Appl Microbiol Biotechnol 49(3):290–294

    Google Scholar 

  • Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Hwang JK, Suhartono MT, Pyun YR (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178(6):538–547

    Google Scholar 

  • Namwong S, Hiraga K, Takada K, Tsunemi M, Tanasupawat S, Oda K (2006) A halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization. Biosci Biotechnol Biochem 70(6):1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Narhi LO, Stabinsky Y, Miller L, Sachdev R, Finley S, Park S, Kolvenbach C, Arakawa T, Zukowski M (1991) Enhanced stability of subtilisin by three point mutations. Biotechnol Appl Biochem 13(1):12–24

    CAS  PubMed  Google Scholar 

  • Narinx E, Baise E, Gerday C (1997) Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10(11):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Neveu J, Regeard C, DuBow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91(3):635–644

    Article  CAS  PubMed  Google Scholar 

  • Nordberg P, von Hofsten B (1969) Proteolytic enzymes from extremely halophilic bacteria. J Gen Microbiol 55(2):251–256

    Article  Google Scholar 

  • Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, Yasuda M, Ishikawa H (1999a) Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J Biosci Bioeng 87(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Yamada M, Watanabe F, Ichinose H, Yasuda M, Ishikawa H (1999b) Peptide synthesis catalyzed by organic-solvent-stable protease from Pseudomonas aeruginosa PST-01 in monophasic aqueous-organic solvent systems. J Biosci Bioeng 88(5):513–518

    Article  CAS  PubMed  Google Scholar 

  • Ong PS, Gaucher GM (1976) Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus Malbranchea pulchella var. sulfurea. Can J Microbiol 22(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Rakholiya KD, Raval VH, Singh SP (2012) Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. J Biosci Bioeng 114(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Pantoliano MW, Ladner RC, Bryan PN, Rollence ML, Wood JF, Poulos TL (1987) Protein engineering of subtilisin BPN’: enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26(8):2077–2082

    Article  CAS  PubMed  Google Scholar 

  • Pantoliano MW, Whitlow M, Wood JF, Rollence ML, Finzel BC, Gillialand GL, Poulos TL, Bryan PN (1988) The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry 27(22):8311–8317

    Google Scholar 

  • Paul T, Das A, Mandal A, Jana A, Halder SK, Das Mohapatra PK, Pati BR, Mondal KC (2014) Smart cleaning properties of a multi tolerance keratinolytic protease from an extremophilic Bacillus tequilensis hsTKB2: prediction of enzyme modification site. Waste Biomass Valoriz 5(6):931–945

    Google Scholar 

  • Pawar R, Zambare V, Barve S, Paratkar G (2009) Application of protease isolated from Bacillus sp. 158 in enzymatic cleansing of contact lenses. Biotechnology 8(2):276–280

    Google Scholar 

  • Pedersen NR, Wimmer R, Matthiesen R, Pedersen LH, Gessesse A (2003) Synthesis of sucrose laurate using a new alkaline protease. Tetrahedron Asymmetry 14(6):667–673

    Article  CAS  Google Scholar 

  • Peek K, Daniel RM, Monk C, Parker L, Coolbear T (1992) Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A. Eur J Biochem 207(3):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Phadatare SU, Deshpande VV, Srinivasan MC (1993) High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enzyme Microb Technol 15(1):72–76

    Google Scholar 

  • Phrommao E, Yongsawatdigul J, Rodtong S, Yamabhai M (2011) A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37. BMC Biotechnol 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri S (2001) An alkaline protease from a Bacillus sp.: production and potential applications in detergent formulation and degumming of silk. MSc thesis, University of Delhi, New Delhi

    Google Scholar 

  • Purohit MK, Singh SP (2011) Comparative analysis of enzymatic stability and amino acid sequences of thermostable alkaline proteases from two haloalkaliphilic bacteria isolated from Coastal region of Gujarat, India. Int J Biol Macromol 49(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Pushpam PL, Rajesh T, Gunasekaran P (2011) Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1(1):3

    Google Scholar 

  • Qua D, Simidu U, Taga N (1981) Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can J Microbiol 27(5):505–510

    Google Scholar 

  • Rai SK, Roy JK, Mukherjee AK (2010) Characterization of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85(5):1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raval VH, Pillai S, Rawal CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 49(6):955–962

    Article  CAS  Google Scholar 

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58(6):1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rheinnecker M, Baker G, Eder J, Fersht AR (1993) Engineering a novel specificity in subtilisin BPN’. Biochemistry 32(5):1199–1203

    Article  CAS  PubMed  Google Scholar 

  • Rheinnecker M, Eder J, Pandey PS, Fersht AR (1994) Variants of subtilisin BPN’ with altered specificity profiles. Biochemistry 33(1):221–225

    Article  CAS  PubMed  Google Scholar 

  • Riva S, Nonini M, Ottolina G, Danieli B (1998) Subtilisin-catalyzed esterification of di- and oligosaccharides containing a D-fructose moiety. Carbohydr Res 314(3–4):259–266

    Article  CAS  PubMed  Google Scholar 

  • Ruiz DM, De Castro RE (2007) Effect of organic solvents on the activity and stability of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. J Ind Microbiol Biotechnol 34(2):111–115. doi:10.1007/s10295-006-0174-4

    Article  CAS  PubMed  Google Scholar 

  • Ruiz DM, Iannuci NB, Cascone O, De Castro RE (2010) Peptide synthesis catalysed by a haloalkaliphilic serine protease from the archaeon Natrialba magadii (Nep). Lett Appl Microbiol 51(6):691–696

    Article  CAS  PubMed  Google Scholar 

  • Saba I, Qazi PH, Rather SA, Dar RA, Qadri QA, Ahmad N, Johri S, Taneja SC, Shawl S (2012) Purification and characterization of a cold active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World J Microbiol Biotechnol 28(3):1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Saeki K, Hitomi J, Okuda M, Hatada Y, Kageyama Y, Takaiwa M, Kubota H, Hagihara H, Kobayashi T, Kawai S, Ito S (2002) A novel species of alkaliphilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Dhanasekaran D, Shanmugapriya S, Latha S (2013) Nocardiopsis sp. SD5: a potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India. J Basic Microbiol 53(7):608–616

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Takezawa M, Nakazawa R, Nozawa K, Kusakawa T, Nagasawa T, Sugahara Y, Kawakita M (2008) Role of disulphide bonds in a thermophilic serine protease Aqualysin I from Thermus aquaticus YT-1. J Biochem 143(5):625–632

    Article  CAS  PubMed  Google Scholar 

  • Sako Y, Croocker PC, Ishida Y (1997) An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. FEBS Lett 415(3):329–334

    Article  CAS  PubMed  Google Scholar 

  • Sana B, Ghosh D, Saha M, Mukherjee J (2006) Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from marine environment of the Sundarbans. Process Biochem 41(1):208–215

    Article  CAS  Google Scholar 

  • SĂĄnchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A (2003) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7(3):221–228

    Google Scholar 

  • Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, Santos ALS (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44(4):1299–1304

    Article  PubMed  Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38(7):769–790

    Article  CAS  PubMed  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37:D5–D15

    Article  CAS  PubMed  Google Scholar 

  • Schmitt W, Rdest U, Goebel W (1990) Efficient high-performance liquid chromatographic system for the purification of halobacterial serine protease. J Chromatogr A 521(2):211–220

    Article  CAS  Google Scholar 

  • Secades P, Alvarez B, Guijarro J (2003) Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett 226(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Selim S, Hagagy N, Aziz MA, El-Meleigy ES, Pessione E (2014) Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 28(18):1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25(6):471–482

    Google Scholar 

  • Setati ME (2010) Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr J Biotechnol 9(11):1555–1560

    Article  CAS  Google Scholar 

  • Setyorini E, Takenaka S, Murakami S, Aoki K (2006) Purification and characterization of two novel halotolerant extracellular protease from Bacillus subtilis strain FP-133. Biosci Biotechnol Biochem 70(2):433–444

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Zhao H, Giver L, Arnold FH (1998) Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res 26(2):681–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Tang XF, Huang Y, Gan F, Tang B, Shen P (2006) An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles 10(6):599–606

    Article  CAS  PubMed  Google Scholar 

  • Shi WL, Zhong CQ, Tang B, Shen P (2007) Purification and characterization of extracellular halophilic protease from haloarchaea Natrinema sp. R6-5. Acta Microbiol Sin 47(1):161–163

    CAS  Google Scholar 

  • Singh J, Batra N, Sobti RC (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem 36(8–9):781–785

    Article  CAS  Google Scholar 

  • Singhal P, Nigam VK, Vidyarthi AS (2012) Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotechnol Res 3(3):653–669

    CAS  Google Scholar 

  • Sinha R, Khare SK (2012) Isolation of a halophilic Virgibacillus sp. EMB13: characterization of its protease for detergent application. Indian J Biotechnol 11:416–426

    CAS  Google Scholar 

  • Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresour Technol 145:357–361

    Article  CAS  PubMed  Google Scholar 

  • Sinsuwan S, Rodtong S, Yongsawatdigul J (2010) A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Food Chem 119(2):573–579

    Article  CAS  Google Scholar 

  • Son E, Kim JI (2003) Multicatalytic alkaline serine protease from psychrotrophic Bacillus amyloliquefaciens S94. J Microbiol 41(1):58–62

    Google Scholar 

  • Stepanov VM, Rudenskaya GN, Revina LP, Gryaznova YB, Lysogorskaya EN, Filippova IY, Ivanova II (1992) A serine proteinase of an archaebacterium, Halobacterium mediterranei. A homologue of eubacterial subtilisins. Biochem J 285(Pt 1):281–286

    Google Scholar 

  • Stepanov VM (1996) Proteinases as catalysts in peptide synthesis. Pure Appl Chem 68(6):1335–1339

    Article  CAS  Google Scholar 

  • Strausberg SL, Alexander PA, Gallagher DT, Gillialand GL, Barnett BL, Bryan PN (1995) Directed evolution of a subtilisin with calcium-independent stability. Nat Biotechnol 13:669–673

    Article  CAS  Google Scholar 

  • Studdert CA, Herrera Seitz MK, Plasencia Gil MI, Sanchez JJ, De Castro RE (2001) Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol 41(6):375–383

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Synowiecki J (2010) Some application of thermophiles and their enzymes for protein processing. Afr J Biotechnol 9(42):7020–7025

    CAS  Google Scholar 

  • Takagi H, Takahashi T, Momose H, Inouye M, Maeda Y, Matsuzawa H, Ohta T (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with thermophilic serine protease. J Biol Chem 265(12):6874–6878

    CAS  PubMed  Google Scholar 

  • Takai H, Sakato K, Nakamizo N, Isowa Y (1981) Enzymatic synthesis of caerulein peptide. In: Oyama K, Nikimura S (eds) Peptide chemistry. Protein Research Foundation, Osaka, Japan, pp 213–241

    Google Scholar 

  • Tariq AL, Reyaz AL, Prabakaran J (2011) Purification and characterization of 56 kDa cold active protease from Serratia marcescens. Afr J Microbiol Res 5(32):5841–5847

    Article  CAS  Google Scholar 

  • Thangam EB, Rajkumar GS (2002) Purification and characterization of alkaline protease from Alcaligenes faecalis. Biotechnol Appl Biochem 35(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Thumar J, Singh SP (2007) Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Chromatogr B 854(1–2):198–203

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2009) Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 26(2):211–218

    Article  CAS  Google Scholar 

  • Tiberti M, Papaleo E (2011) Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 174(1):69–83

    Article  CAS  PubMed  Google Scholar 

  • Toplak A, Wu B, Fusetti F, Quaedflieg PJ, Janssen DB (2013) Proteolysin, a novel highly thermostable and cosolvent-compatible protease from the thermophilic bacterium Coprothermobacter proteolyticus. Appl Environ Microbiol 79(18):5625–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7(6):435–442

    Article  CAS  PubMed  Google Scholar 

  • van den Burg B, Enequist HG, van den Haar ME, Eijsink VG, Stulp BK, Venema G (1991) A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J Bacteriol 173(13):4107–4115

    PubMed  PubMed Central  Google Scholar 

  • Varela H, Ferrari MD, Belobrajdic L, Vazquez A, Loperena ML (1997) Skin unhairing proteases of Bacillus subtilis: production and partial characterization. Biotechnol Lett 19(8):755–758

    Article  CAS  Google Scholar 

  • Vazquez S, Ruberto L, Mac Cormak W (2005) Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biol 28(4):319–325

    Article  Google Scholar 

  • Vidyasagar M, Prakash S, Litchfield C, Sreeramulu K (2006) Purification and characterization of a thermostable, haloalkaliphilic extracellular serine protease from the extreme halophilic archaeon Halogeometricum borinquense strain TSS101. Archaea 2:51–57

    Google Scholar 

  • Vidyasagar M, Prakash S, Mahajan V, Shouche YS, Sreeramulu K (2009) Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz J Microbiol 40(1):12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VijayAnand S, Hemaprita J, Selvin J, Kiran S (2010) Production and optimization of haloalkaliphilic protease by an extremophile – Halobacterium sp. Js1, isolated from thalassohaline environment. Glob J Biotechnol Biochem 5(1):44–49

    CAS  Google Scholar 

  • Voorhorst WGB, Eggen RIL, Geerling ACM, Platteeuw C, Siezen RJ, de Vos WM (1996) Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 271(34):20426–20431

    Article  CAS  PubMed  Google Scholar 

  • Waghmare SR, Gurav AA, Mali SA, Nadaf NH, Jadhav DB, Sonawane KD (2015) Purification and characterization of novel organic solvent tolerant 98 kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Protein Expr Purif 107:1–6

    Article  CAS  PubMed  Google Scholar 

  • Wang QF, Miao JL, Hou YH, Ding Y, Wang GD, Li GY (2005) Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol Lett 27(16):1195–1198

    Article  CAS  PubMed  Google Scholar 

  • Wang QF, Hou HY, Xu Z, Miao JL, Li GY (2008) Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem Eng J 38(3):362–368

    Article  CAS  Google Scholar 

  • Wilson SA, Daniel RM, Peek K (1994) Peptide synthesis with a proteinase from the extremely thermophilic organism Thermus Rt41A. Biotechnol Bioeng 44(3):337–346

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Song L, Xu Y, Tsoi MY, Dobretsov S, Qian PY (2007) Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. J Ind Microbiol Biotechnol 34(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Zhong Q, Tang X, Yang Y, Huang Z (2009) Isolation and characterization of a new keratinolytic bacterium that exhibits significant feather-degrading capability. Afr J Biotechnol 8(18):4590–4596

    CAS  Google Scholar 

  • Yang C, Wang F, Hao J, Zhang K, Yuan N, Sun M (2010) Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active alkaline metalloprotease Ps5. Biosci Biotechnol Biochem 74(6):1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Yang XS, Chen XL, Xu XZ, Zeng RY (2011) Cold-adaptive alkaline protease from the psychrophilic Planomicrobium sp. 547: enzyme characterization and gene cloning. Adv Polar Sci 22(1):49–54

    Google Scholar 

  • Yang J, Li J, Mai Z, Tian X, Zhang S (2013) Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. J Biosci Bioeng 115(6):628–632

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2014) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33(7):1433–1442

    Google Scholar 

  • Yu TX (1991) Proteases of haloalkaliphiles. In: Horikoshi K, Grand WD (eds) Superbugs: microorganisms in extreme environments. Japan Scientific Societies Press/Springer-Verlag, Tokyo/Berlin, pp 76–83

    Google Scholar 

  • Yuan Q, Hayashi A, Kitamura Y, Shimada T, Na R, Jin X (2009) Purification and characterization of cold-adapted metalloprotease from deep sea water lactic acid bacteria Enterococcus faecalis TN-9. Int J Biol 1(2):12–21

    Article  CAS  Google Scholar 

  • Zeng R, Zhang R, Zhao J, Lin N (2003) Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7(4):335–337

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Arnold FH (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Zhao GY, Zhou MY, Zhao HL, Chen XL, Xie BB, Zhang XY, He HL, Zhou BC, Zhang YZ (2012) Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chem 134(4):1738–1744

    Article  CAS  PubMed  Google Scholar 

  • Zhu HY, Tian Y, Hou YH, Wang TH (2009) Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol Biol Rep 36(8):2169–2174

    Article  CAS  PubMed  Google Scholar 

Internet Website

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta BiaƂkowska .

Editor information

Editors and Affiliations

Ethics declarations

Aneta BiaƂkowska, Ewa Gromek, Tomasz Florczak, Joanna Krysiak, Katarzyna Szulczewska, and Marianna Turkiewicz declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

BiaƂkowska, A., Gromek, E., Florczak, T., Krysiak, J., Szulczewska, K., Turkiewicz, M. (2016). Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_14

Download citation

Publish with us

Policies and ethics