Skip to main content

Why Advanced Population Initialization Techniques Perform Poorly in High Dimension?

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Many advanced population initialization techniques for Evolutionary Algorithms (EAs) have hitherto been proposed. Several studies claimed that the techniques significantly improve EAs’ performance. However, recent researches show that they cannot scale well to high dimensional spaces. This study investigates the reasons behind the failure of advanced population initialization techniques in large-scale problems by adopting a wide range of population sizes. To avoid being biased to any particular EA model or problem set, this study employs general purpose tools in the experiments. Our investigations show that, in spite of population size, uniformity of populations drops dramatically when dimensionality grows. The observation confirms that the uniformity loss exist in high dimensional spaces regardless of the type of EA, initializer or problem. Therefore, we conclude that the weak uniformity of the resulting population is the main cause of the poor performance of advanced initializers in high dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bratley, P., Fox, B.L.: Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Transactions on Mathematical Software (TOMS) 14(1), 88–100 (1988)

    Article  MATH  Google Scholar 

  2. Clerc, M.: Initialisations for particle swarm optimisation (2008), http://clerc.maurice.free.fr/pso

  3. Fang, K.T., Lin, D.K.: Uniform experimental designs and their applications in industry. Handbook of Statistics 22, 131–170 (2003)

    Article  MathSciNet  Google Scholar 

  4. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2(1), 84–90 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hickernell, F.: A generalized discrepancy and quadrature error bound. Mathematics of Computation of the American Mathematical Society 67(221), 299–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jun, B., Kocher, P.: The Intel random number generator. Cryptography Research Inc. white paper (1999)

    Google Scholar 

  7. Kazimipour, B., Li, X., Qin, A.: Initialization methods for large scale global optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2750–2757. IEEE (2013)

    Google Scholar 

  8. Kazimipour, B., Li, X., Qin, A.: Effects of population initialization on differential evolution for large scale optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2404–2411. IEEE (2014)

    Google Scholar 

  9. Kazimipour, B., Li, X., Qin, A.: A review of population initialization techniques for evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2585–2592. IEEE (2014)

    Google Scholar 

  10. Kazimipour, B., Omidvar, M.N., Li, X., Qin, A.: A novel hybridization of opposition-based learning and cooperative co-evolutionary for large-scale optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2833–2840. IEEE (2014)

    Google Scholar 

  11. Leung, Y.W., Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation 5(1), 41–53 (2001)

    Article  Google Scholar 

  12. Marsaglia, G., Zaman, A.: The KISS generator. Tech. rep., Department of Statistics, University of Florida (1993)

    Google Scholar 

  13. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  14. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  Google Scholar 

  15. Park, S.K., Miller, K.W.: Random number generators: good ones are hard to find. Communications of the ACM 31(10), 1192–1201 (1988)

    Article  MathSciNet  Google Scholar 

  16. Peng, L., Wang, Y., Dai, G.: UDE: differential evolution with uniform design. In: 2010 Third International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 239–246. IEEE (2010)

    Google Scholar 

  17. Peng, L., Wang, Y., Dai, G., Cao, Z.: A novel differential evolution with uniform design for continuous global optimization. Journal of Computers 7(1), 3–10 (2012)

    Article  Google Scholar 

  18. Sloan, I.H., Joe, S.: Lattice methods for multiple integration. Oxford University Press (1994)

    Google Scholar 

  19. Sobol, I.M.: On quasi-monte carlo integrations. Mathematics and Computers in Simulation 47(2), 103–112 (1998)

    Article  MathSciNet  Google Scholar 

  20. Zheng, H., Zheng, Y., Li, P.: Sine-map chaotic pso-based neural network predictive control for deployable space truss structures. In: 2013 IEEE International Symposium on Industrial Electronics (ISIE), pp. 1–5 (May 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kazimipour, B., Li, X., Qin, A.K. (2014). Why Advanced Population Initialization Techniques Perform Poorly in High Dimension?. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics