Skip to main content

Two-Temperature Formalin Fixation Preserves Activation States Efficiently

  • Chapter
  • First Online:
Pre-Analytics of Pathological Specimens in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 199))

Abstract

Modern pathology is built around the principle of preserving tissues such that the in vivo molecular status is maintained at levels representative of the disease state. Tissues are immersed in a solution of fixative which slowly inactivates biological activities, thus preserving the sample. Further processing ultimately allows the tissue to be embedded into wax for thin sectioning and staining for interpretation microscopically. Every year, around 7 billion tissue samples are submitted for processing in the United States alone. With this huge workload, histology laboratories are looking for faster methods of performing fixation, which currently require from several hours to days to complete. Ideally, this procedure could be standardized and would be quicker with better preservation over a wide range of biologically relevant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox CH, Johnson FB, Whiting J, Roller PP (1985) J Histochem Cytochem 33:845–853

    Article  CAS  PubMed  Google Scholar 

  2. Tan DS, Thomas GV, Garrett MD, Banerji U, de Bono JS, Kaye SB, Workman P (2009) Cancer J 15:406–420

    Article  CAS  PubMed  Google Scholar 

  3. Yokota T (2014) Int J Clin Oncol 19:211–219

    Google Scholar 

  4. Sierra JR, Tsao MS (2011) Ther Adv Med Oncol 3:S21–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT (2013) Oncogene 33:2949–2955

    Google Scholar 

  6. Khoury T, Sait S, Hwang H, Chandrasekhar R, Wilding G, Tan D, Kulkarni S (2009) Mod Pathol 22:1457–1467

    Article  CAS  PubMed  Google Scholar 

  7. Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S, Esteva FJ, Buzdar AU, Chen H, Eksambi S, Hortobagyi GN, Baselga J, Gonzalez-Angulo AM (2009) Clin Cancer Res 15:7381–7388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF (2009) J Clin Oncol 27:1323–1333

    Article  CAS  PubMed  Google Scholar 

  9. Juhl H (2010) Scand J Clin Lab Invest Suppl 242:63–65

    Article  PubMed  Google Scholar 

  10. Chafin D, Theiss A, Roberts E, Borlee G, Otter M, Baird GS (2013) PLoS ONE 8:e54138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) J Clin Oncol 31:3997–4014

    Google Scholar 

  12. Morales AR, Essenfeld H, Essenfeld E, Duboue MC, Vincek V, Nadji M (2002) Arch Pathol Lab Med 126:583–590

    PubMed  Google Scholar 

  13. Adams D (2004) Am J Clin Pathol 122:612–613, 613–614

    Google Scholar 

  14. Ainley CD, Ironside JW (1994) J Neurosci Methods 55:183–190

    Article  CAS  PubMed  Google Scholar 

  15. Antunes L, Montagne K, Weinbreck N, Marchal L, Thiebault D, Bonnet C, Gauche D, Plenat F (2006) Histopathology 48:471–473

    Article  CAS  PubMed  Google Scholar 

  16. Alcolea MP, Casado P, Rodriguez-Prados JC, Vanhaesebroeck B, Cutillas PR (2012) Mol Cell Proteomics 11:453–466

    Article  PubMed Central  PubMed  Google Scholar 

  17. Andersen E, Bashir H, Archer GT (1981) Vox Sang 40:44–47

    Article  CAS  PubMed  Google Scholar 

  18. Angelini S, Ravegnini G, Fletcher JA, Maffei F, Hrelia P (2013) Pharmacogenomics 14:941–956

    Article  CAS  PubMed  Google Scholar 

  19. Chen YM (2013) J Chin Med Assoc 76:249–257

    Article  CAS  PubMed  Google Scholar 

  20. Cheng L, Zhang S, Alexander R, Yao Y, MacLennan GT, Pan CX, Huang J, Wang M, Montironi R, Lopez-Beltran A (2011) Future Oncol 7:519–541

    Article  CAS  PubMed  Google Scholar 

  21. Drier Y, Sheffer M, Domany E (2013) Proc Natl Acad Sci USA 110:6388–6393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Al-Bazz YO, Underwood JC, Brown BL, Dobson PR (2009) Eur J Cancer 45:694–704

    Article  CAS  PubMed  Google Scholar 

  23. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, Pastore L, Sennesh J, Petricoin EF 3rd, Liotta LA (2008) Mol Cell Proteomics 7:1998–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Szanto A, Bognar Z, Szigeti A, Szabo A, Farkas L, Gallyas F Jr (2009) Anticancer Res 29:159–164

    CAS  PubMed  Google Scholar 

  25. Wolf C, Jarutat T, Vega Harring S, Haupt K, Babitzki G, Bader S, David K, Juhl H, Arbogast S (2013) Histopathology 64:431–444

    Google Scholar 

  26. Baek JM, Jin Q, Ensor J, Boulbes DR, Esteva FJ (2011) Breast Cancer Res Treat 130:1029–1036

    Article  CAS  PubMed  Google Scholar 

  27. Betts G, Valentine H, Pritchard S, Swindell R, Williams V, Morgan S, Griffiths EA, Welch I, West C, Womack C (2013) Virchows Arch 464:145–156

    Article  PubMed  Google Scholar 

  28. Bravata V, Cammarata FP, Forte GI, Minafra L (2013) OMICS 17:119–129

    Article  CAS  PubMed  Google Scholar 

  29. Buzdar AU (2009) Ann Oncol 20:993–999

    Article  CAS  PubMed  Google Scholar 

  30. Dean-Colomb W, Esteva FJ (2008) Eur J Cancer 44:2806–2812

    Article  CAS  PubMed  Google Scholar 

  31. Esteva FJ, Cheli CD, Fritsche H, Fornier M, Slamon D, Thiel RP, Luftner D, Ghani F (2005) Breast Cancer Res 7:R436–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) Am J Pathol 177:1647–1656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Figueroa-Magalhaes MC, Jelovac D, Connolly RM, Wolff AC (2014) The Breast 23:e128–136

    Google Scholar 

  34. Gonzalez-Angulo AM (2011) Clin Adv Hematol Oncol 8:873–874

    Google Scholar 

  35. Fentz AK, Sporl M, Spangenberg J, List HJ, Zornig C, Dorner A, Layer P, Juhl H, David KA (2007) Proteomics Clin Appl 1:536–544

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chafin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chafin, D. (2015). Two-Temperature Formalin Fixation Preserves Activation States Efficiently. In: Dietel, M., Wittekind, C., Bussolati, G., von Winterfeld, M. (eds) Pre-Analytics of Pathological Specimens in Oncology. Recent Results in Cancer Research, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-13957-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13957-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13956-2

  • Online ISBN: 978-3-319-13957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics