Skip to main content

Preanalytics in Lung Cancer

  • Chapter
  • First Online:
Pre-Analytics of Pathological Specimens in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 199))

Abstract

Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Gellert AR, Rudd RM, Sinha G et al (1982) Fibreoptic bronchoscopy: effect of multiple bronchial biopsies on diagnostic yield in bronchial carcinoma. Thorax 37:684–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Popovich J Jr, Kvale PA, Eichenhorn MS et al (1982) Diagnostic accuracy of multiple biopsies from flexible fiberoptic bronchoscopy. A comparison of central versus peripheral carcinoma. Am Rev Respir Dis 125:521–523

    PubMed  Google Scholar 

  4. Hetzel J, Eberhardt R, Herth FJ et al (2012) Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur Respir J 39:685–690

    Article  CAS  PubMed  Google Scholar 

  5. Laurent F, Latrabe V, Vergier B et al (2000) Percutaneous CT-guided biopsy of the lung: comparison between aspiration and automated cutting needles using a coaxial technique. Cardiovasc Intervent Radiol 23:266–272

    Article  CAS  PubMed  Google Scholar 

  6. Levine MS, Weiss JM, Harrell JH et al (1988) Transthoracic needle aspiration biopsy following negative fiberoptic bronchoscopy in solitary pulmonary nodules. Chest 93:1152–1155

    Article  CAS  PubMed  Google Scholar 

  7. Fassina A, Corradin M, Zardo D et al (2011) Role and accuracy of rapid on-site evaluation of CT-guided fine needle aspiration cytology of lung nodules. Cytopathology 22:306–312

    Article  CAS  PubMed  Google Scholar 

  8. O’Neill AC, McCarthy C, Ridge CA et al (2012) Rapid needle-out patient-rollover time after percutaneous CT-guided transthoracic biopsy of lung nodules: effect on pneumothorax rate. Radiology 262:314–319

    Article  PubMed  Google Scholar 

  9. Kazerooni EA, Lim FT, Mikhail A et al (1996) Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung. Radiology 198:371–375

    Article  CAS  PubMed  Google Scholar 

  10. Khan MF, Straub R, Moghaddam SR et al (2008) Variables affecting the risk of pneumothorax and intrapulmonal hemorrhage in CT-guided transthoracic biopsy. Eur Radiol 18:1356–1363

    Article  CAS  PubMed  Google Scholar 

  11. Shure D, Fedullo PF (1985) Transbronchial needle aspiration in the diagnosis of submucosal and peribronchial bronchogenic carcinoma. Chest 88:49–51

    Article  CAS  PubMed  Google Scholar 

  12. Kacar N, Tuksavul F, Edipoglu O et al (2005) Effectiveness of transbronchial needle aspiration in the diagnosis of exophytic endobronchial lesions and submucosal/peribronchial diseases of the lung. Lung Cancer 50:221–226

    Article  PubMed  Google Scholar 

  13. Micames CG, McCrory DC, Pavey DA et al (2007) Endoscopic ultrasound-guided fine-needle aspiration for non-small cell lung cancer staging: a systematic review and metaanalysis. Chest 131:539–548

    Article  PubMed  Google Scholar 

  14. Herth FJ, Krasnik M, Kahn N et al (2010) Combined endoscopic-endobronchial ultrasound-guided fine-needle aspiration of mediastinal lymph nodes through a single bronchoscope in 150 patients with suspected lung cancer. Chest 138:790–794

    Article  PubMed  Google Scholar 

  15. Fernandez-Villar A, Gonzalez A, Leiro V et al (2006) Effect of different bronchial washing sequences on diagnostic yield in endoscopically visible lung cancer. Arch Bronconeumol 42:278–282

    Article  PubMed  Google Scholar 

  16. van der Drift MA, van der Wilt GJ, Thunnissen FB et al (2005) A prospective study of the timing and cost-effectiveness of bronchial washing during bronchoscopy for pulmonary malignant tumors. Chest 128:394–400

    Article  PubMed  Google Scholar 

  17. Mak VH, Johnston ID, Hetzel MR et al (1990) Value of washings and brushings at fibreoptic bronchoscopy in the diagnosis of lung cancer. Thorax 45:373–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Totsch M, Guzman J, Theegarten D et al (2007) Bronchoalveolar lavage. Pathologe 28:346–353

    Article  CAS  PubMed  Google Scholar 

  19. Thunnissen E, Kerr KM, Herth FJ et al (2012) The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 76:1–18

    Article  PubMed  Google Scholar 

  20. Thunnissen FB (2003) Sputum examination for early detection of lung cancer. J Clin Pathol 56:805–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Karahalli E, Yilmaz A, Turker H et al (2001) Usefulness of various diagnostic techniques during fiberoptic bronchoscopy for endoscopically visible lung cancer: should cytologic examinations be performed routinely? Respiration 68:611–614

    Article  CAS  PubMed  Google Scholar 

  22. Govert JA, Kopita JM, Matchar D et al (1996) Cost-effectiveness of collecting routine cytologic specimens during fiberoptic bronchoscopy for endoscopically visible lung tumor. Chest 109:451–456

    Article  CAS  PubMed  Google Scholar 

  23. Lee HS, Lee GK, Kim MS et al (2008) Real-time endobronchial ultrasound-guided transbronchial needle aspiration in mediastinal staging of non-small cell lung cancer: how many aspirations per target lymph node station? Chest 134:368–374

    Article  PubMed  Google Scholar 

  24. Stenzinger A, Penzel R, Endris V et al (2013) Molecular diagnostics in pathology. Dtsch Med Wochenschr 138:1061–1068

    Article  CAS  PubMed  Google Scholar 

  25. Wiedorn KH, Olert J, Stacy RA et al (2002) HOPE–a new fixing technique enables preservation and extraction of high molecular weight DNA and RNA of >20 kb from paraffin-embedded tissues. Hepes-glutamic acid buffer mediated organic solvent protection effect. Pathol Res Pract 198:735–740

    Article  CAS  PubMed  Google Scholar 

  26. Staff S, Kujala P, Karhu R et al (2013) Preservation of nucleic acids and tissue morphology in paraffin-embedded clinical samples: comparison of five molecular fixatives. J Clin Pathol 66:807–810

    Article  PubMed  Google Scholar 

  27. Gundisch S, Schott C, Wolff C et al (2013) The PAXgene® tissue system preserves phosphoproteins in human tissue specimens and enables comprehensive protein biomarker research. PLoS ONE 8:e60638

    Article  PubMed Central  PubMed  Google Scholar 

  28. Paska C, Bogi K, Szilak L et al (2004) Effect of formalin, acetone, and RNAlater fixatives on tissue preservation and different size amplicons by real-time PCR from paraffin-embedded tissue. Diagn Mol Pathol 13:234–240

    Article  CAS  PubMed  Google Scholar 

  29. van Eijsden RG, Stassen C, Daenen L et al (2013) A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study. Biotechnol Lett 35:891–900

    Article  CAS  PubMed  Google Scholar 

  30. Warth A, Muley T, Meister M et al (2012) The novel histologic international association for the study of lung cancer/American thoracic society/European respiratory society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446

    Article  PubMed  Google Scholar 

  31. Warth A, Muley T, Herpel E et al (2012) Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 61:1017–1025

    Article  PubMed  Google Scholar 

  32. Warth A, Stenzinger A, Weichert W (2013) Novel morphological and molecular aspects of lung cancer. Pathologe 34:419–428

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  34. Muley T, Herth FJF, Schnabel PA et al (2012) From tissue to molecular phenotyping: pre-analytical requirements Heidelberg experience. Transl Lung Cancer Res 2:111–121

    Google Scholar 

  35. Warth A, Penzel R, Brandt R et al (2012) Optimized algorithm for Sanger sequencing-based EGFR mutation analyses in NSCLC biopsies. Virchows Arch 460:407–414

    Article  CAS  PubMed  Google Scholar 

  36. Endris V, Penzel R, Warth A et al (2013) Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn 15:765–775

    Article  CAS  PubMed  Google Scholar 

  37. Rivera MP, Mehta AC, Wahidi MM (2013) Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 143:e142S–e165S

    Article  PubMed  Google Scholar 

  38. Gompelmann D, Eberhardt R, Herth FJ (2011) Advanced malignant lung disease: what the specialist can offer. Respiration 82:111–123

    Article  CAS  PubMed  Google Scholar 

  39. Herth FJ, Bubendorf L, Gutz S et al (2013) Diagnostic and predictive analyses of cytological specimens of non-small cell lung cancer: strategies and challenges. Pneumologie 67:198–204

    Article  CAS  PubMed  Google Scholar 

  40. Kossakowski CA, Morresi-Hauf A, Schnabel PA et al (2014) Preparation of cell blocks for lung cancer diagnosis and prediction: protocol and experience of a high-volume center. Respiration 87:432–438

    Google Scholar 

  41. Warth A, Bubendorf L, Gutz S et al (2013) Molecular pathological diagnosis in cytopathology of non-small-cell lung cancer. Standardization of specimen processing. Pathologe 34:310–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilko Weichert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warth, A., Muley, T., Meister, M., Weichert, W. (2015). Preanalytics in Lung Cancer. In: Dietel, M., Wittekind, C., Bussolati, G., von Winterfeld, M. (eds) Pre-Analytics of Pathological Specimens in Oncology. Recent Results in Cancer Research, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-13957-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13957-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13956-2

  • Online ISBN: 978-3-319-13957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics