Skip to main content

A Patient-Specific EMG-Driven Musculoskeletal Model for Improving the Effectiveness of Robotic Neurorehabilitation

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8917))

Included in the following conference series:

Abstract

An EMG-driven musculoskeletal model for controlling the human-inspired robotic neurorehabilitation is proposed in this paper. This model is built upon the state-of-the-art computer generated musculoskeletal framework which provides patient-specific muscular-tendon physiological, muscular-tendon kinematics parameters. Muscle forces and joint moment during locomotion are predicted through activation dynamics and contraction dynamics based on the hill-type muscle mechanics model. A hybrid Simulink-M simulated anneal algorithm is used for parameters optimization. The preliminary result showed that based on only a few EMG channels, the proposed model could efficiently predict joint moment and muscle forces. The proposed model has the potential to control the rehabilitation robot based only on a few of EMG channels from extensor and flexor muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stroke Foundation of New Zealand and New Zealand Guidelines Group. Clinical Guidelines for Stroke Management. Stroke Fundation of New Zealand, Willington (2010)

    Google Scholar 

  2. Hogan, N., Krebs, H.I.: Interactive robots for neuro-rehabilitation. Restorative Neurology and Neuroscience 22(3), 349–358 (2004)

    Google Scholar 

  3. Pohl, M., et al.: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical rehabilitation 21(1), 17–27 (2007)

    Article  Google Scholar 

  4. Patton, J.L., Kovic, M., Mussa-Ivaldi, F.A.: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. Journal of Rehabilitation Research and Development 43(5), 643 (2006)

    Article  Google Scholar 

  5. Beyl, P., et al.: Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Advanced Robotics 25(5), 513–535 (2011)

    Article  Google Scholar 

  6. Kong, K., et al.: Mechanical design and impedance compensation of SUBAR (Sogang University’s Biomedical Assist Robot). In: 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008, August 2-August 5. Institute of Electrical and Electronics Engineers Inc., Xi’an (2008)

    Google Scholar 

  7. Gupta, A., et al.: Design, control and performance of rice wrist: a force feedback wrist exoskeleton for rehabilitation and training. International Journal of Robotics Research 27(2), 233–251 (2008)

    Article  Google Scholar 

  8. Stauffer, Y., et al.: The WalkTrainer-A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(1), 38–45 (2009)

    Article  MathSciNet  Google Scholar 

  9. Hidler, J.M., Wall, A.E.: Alterations in muscle activation patterns during robotic-assisted walking. Clinical Biomechanics 20(2), 184–193 (2005)

    Article  Google Scholar 

  10. Cai, L.L., et al.: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. The Journal of Neuroscience 26(41), 10564–10568 (2006)

    Article  Google Scholar 

  11. Jezernik, S., et al.: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord 41(12), 657–666 (2003)

    Article  Google Scholar 

  12. Enoka, R.M.: Neuromechanics of human movement. Human Kinetics (2008)

    Google Scholar 

  13. Liu, M.Q., et al.: Muscle contributions to support and progression over a range of walking speeds. Journal of Biomechanics 41(15), 3243–3252 (2008)

    Article  Google Scholar 

  14. http://opensim.stanford.edu/

  15. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17(4), 359–411 (1989)

    Google Scholar 

  16. Delp, S.L., et al.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37(8), 757–767 (1990)

    Article  Google Scholar 

  17. Seth, A., et al.: OpenSim: a musculoskeletal modeling and simulation framework for<i> in silico</i> investigations and exchange. Procedia IUTAM 2, 212–232 (2011)

    Article  Google Scholar 

  18. Gao, F., et al.: Computational method for muscle-path representation in musculoskeletal models. Biological Cybernetics 87(3), 199–210 (2002)

    Article  MATH  Google Scholar 

  19. Garner, B.A., Pandy, M.G.: The obstacle-set method for representing muscle paths in musculoskeletal models. Computer Methods in Biomechanics and Biomedical Engineering 3(1), 1–30 (2000)

    Article  Google Scholar 

  20. Buchanan, T.S., et al.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics 20(4), 367 (2004)

    Google Scholar 

  21. Koo, T.K.K., Mak, A.F.T.: Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. Journal of Electromyography and Kinesiology 15(1), 12–26 (2005)

    Article  Google Scholar 

  22. Koo, K.-K.T.: Neuromusculoskeletal modeling of the elbow joint in subjects with and without spasticity (2002)

    Google Scholar 

  23. Sartori, M., et al.: An EMG-driven Musculoskeletal Model of the Human Lower Limb for the Estimation of Muscle Forces and Moments at the Hip, Knee and Ankle Joints in vivo. In: Proc. of Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots (2010)

    Google Scholar 

  24. Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  25. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences 126(843), 136–195 (1938)

    Article  Google Scholar 

  26. Hill, A.V.: The abrupt transition from rest to activity in muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences 136(884), 399–420 (1949)

    Article  Google Scholar 

  27. Huxley, A.: Muscular contraction. The Journal of Physiology 243(1), 1 (1974)

    Google Scholar 

  28. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical Engineering 125(1), 70–77 (2003)

    Article  Google Scholar 

  29. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics 36(6), 765–776 (2003)

    Article  Google Scholar 

  30. Pau, J.W.L., Xie, S.S.Q., Pullan, A.J.: Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint. IEEE Transactions on Biomedical Engineering 59(9), 2586–2593 (2012)

    Article  Google Scholar 

  31. Bogey, R.A., Perry, J., Gitter, A.J.: An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3), 302–310 (2005)

    Article  Google Scholar 

  32. Pandy, M.G., Hull, D.G., Anderson, F.C.: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. Journal of Biomechanical Engineering 114(4), 450–460 (1992)

    Article  Google Scholar 

  33. Pau, J.W.L., et al.: An EMG-driven neuromuscular interface for human elbow joint. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE (2010)

    Google Scholar 

  34. Pau, J.W.L., Xie, S.S.Q., Xu, W.L.: Neuromuscular interfacing: A novel approach to EMG-driven multiple DOF physiological models. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2013)

    Google Scholar 

  35. Yeo, S.H., et al.: Phenomenological models of the dynamics of muscle during isotonic shortening. Journal of Biomechanics 46(14), 2419–2425 (2013)

    Article  Google Scholar 

  36. Winters, J.: Hill-Based Muscle Models: A Systems Engineering Perspective. In: Winters, J., Woo, S.-Y. (eds.) Multiple Muscle Systems, pp. 69–93. Springer, New York (1990)

    Chapter  Google Scholar 

  37. Shao, Q., et al.: An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Computers in Biology and Medicine 39(12), 1083–1088 (2009)

    Article  Google Scholar 

  38. Sartori, M., et al.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS One 7(12), e52618 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, Y., Xie, S.Q., Zhang, Y. (2014). A Patient-Specific EMG-Driven Musculoskeletal Model for Improving the Effectiveness of Robotic Neurorehabilitation. In: Zhang, X., Liu, H., Chen, Z., Wang, N. (eds) Intelligent Robotics and Applications. ICIRA 2014. Lecture Notes in Computer Science(), vol 8917. Springer, Cham. https://doi.org/10.1007/978-3-319-13966-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13966-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13965-4

  • Online ISBN: 978-3-319-13966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics