Skip to main content

Face-to-Face Interactions

  • Chapter
Social Phenomena

Part of the book series: Computational Social Sciences ((CSS))

Abstract

Face-to-face interactions of humans play a crucial role in their social relationships as well as in the potential transmission of infectious diseases. Here we discuss recent research efforts and advances concerning the measure, analysis and modelling of such interactions measured using strategies ranging from surveys to decentralised infrastructures based on wearable sensors. We present a number of empirical characteristics of face-to-face interaction patterns and novel techniques aimed at uncovering mesoscopic structures in these patterns. We also mention recent modelling efforts and conclude with some open questions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also [57] for more abstract modelling of adaptive networks.

References

  1. Read, J. M., Edmunds, W. J., Riley, S., Lessler, J., & Cummings, D. A. T. (2012). Close encounters of the infectious kind: Methods to measure social mixing behaviour. Epidemiology and Infection, 140, 2117–2130.

    Article  Google Scholar 

  2. Bernard, H., Fischer, R., Mikolajczyk, R. T., Kretzschmar, M., & Wildner, M. (2005). Nurses contacts and potential for infectious disease transmission. Emerging Infectious Diseases, 15(9), 1438–1444.

    Article  Google Scholar 

  3. Edmunds, W. J., O’callaghan, C. J., & Nokes, D. J. (1997). Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proceedings of the Royal Society of London B, 264, 949–957.

    Google Scholar 

  4. Read, J. M., Eames, K. T. D., & Edmunds, W. J. (2008). Dynamic social networks and the implications for the spread of infectious disease. Journal of the Royal Society Interface, 5, 1001–1007.

    Article  Google Scholar 

  5. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., et al. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 5, e74.

    Article  Google Scholar 

  6. Mikolajczyk, R. T., Akmatov, M. K., Rastin. S., & Kretzschmar, M. (2008). Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiology and Infection, 136(6), 813–822.

    Article  MATH  Google Scholar 

  7. Danon, L., House, T. A., Read, J. M., & Keeling, M. J. (2012). Social encounter networks: Collective properties and disease transmission. Journal of the Royal Society Interface 9, 2826–2833.

    Article  Google Scholar 

  8. Danon, L., Read, J. M., House, T. A., Vernon, M. C., & Keeling, M. J. (2013). Social encounter networks: Characterizing Great Britain. Proceedings of the Royal Society B, 280, 20131037.

    Article  Google Scholar 

  9. Conlan, A. J. K., Eames, K. T. D., Gage, J. A., von Kirchbach, J. C., Ross, J. V., Saenz, R. A., et al. (2011). Measuring social networks in British primary schools through scientific engagement. Proceedings of the Biological Sciences, 278, 1467–1475.

    Google Scholar 

  10. Van Kerckhove, K., Hens, N., Edmunds, W. J., & Eames, K. T. D. (2013). The impact of illness on social networks: implications for transmission and control of influenza. American Journal of Epidemiology, 178, 1655–1662.

    Article  Google Scholar 

  11. Smieszek, T., Burri, E. U., Scherzinger, R., & Scholz, R. W. (2012). Collecting close-contact social mixing data with contact diaries: Reporting errors and biases. Epidemiology and Infection, 140, 744–752.

    Article  Google Scholar 

  12. Smieszek, T., Barclay, V. C., Seeni, I., Rainey, J. J., Gao, H., Uzicanin, A., et al. (2014). How should social mixing be measured? Comparing survey- and sensor-based methods. BMC Infectious Diseases, 14, 136.

    Article  Google Scholar 

  13. Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., et al. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429, 180–184.

    Article  ADS  Google Scholar 

  14. Iozzi, F., Trusiano, F., Chinazzi, M., Billari, F. C., Zagheni, E., Merler, S., et al. (2010). Little Italy: An agent-based approach to the estimation of contact patterns-fitting predicted matrices to serological data. PLoS Computational Biology, 6(12), e1001021.

    Article  MathSciNet  ADS  Google Scholar 

  15. Fumanelli, L., Ajelli, M., Manfredi, P., Vespignani, A., & Merler, S. (2012). Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread. PLoS Computational Biology, 8(9), e1002673.

    Article  MathSciNet  ADS  Google Scholar 

  16. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., & Diot, C. (2005). Pocket switched networks and human mobility in conference environments. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking (pp. 244–251), Philadelphia, Pennsylvania, USA.

    Google Scholar 

  17. O’Neill, E., Kostakos, V., Kindberg, T., Fatah gen Schieck, A., Penn, A., Fraser, D. S., et al. (2006). Instrumenting the city: Developing methods for observing and understanding the digital cityscape. Lecture Notes in Computer Science, 4206, 315–322.

    Google Scholar 

  18. Pentland, A. (2008). Honest signals: How they shape our world. Cambridge, MA: MIT Press.

    Google Scholar 

  19. Salathé, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020–22025.

    Article  ADS  Google Scholar 

  20. Hashemian, M., Stanley, K., & Osgood, N. (2010). Flunet: Automated tracking of contacts during flu season. In Proceedings of the 6th International Workshop on Wireless Network Measurements (pp. 557–562), Avignon, 1–3 June 2010.

    Google Scholar 

  21. http://www.sociopatterns.org/.

  22. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J. -F., & Vespignani, A. (2010). Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One, 5, e11596.

    Article  ADS  Google Scholar 

  23. Hornbeck, T., Naylor, D., Segre, A. M., Thomas, G., Herman, T., & Polgreen, P. M. (2012). Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. The Journal of Infectious Diseases, 206, 1549.

    Article  Google Scholar 

  24. Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Madsen, M. M., Larsen, J. E., et al. (2014). Measuring large-scale social networks with high resolution. PLoS One, 9(4), e95978.

    Article  ADS  Google Scholar 

  25. Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519, 97–125.

    Article  ADS  Google Scholar 

  26. Karagiannis, T., Le Boudec, J. -Y., & Vojnovic, M. (2007). Power law and exponential decay of inter contact times between mobile devices. In Mobicom 07 (p. 183).

    Google Scholar 

  27. Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J. -L., & Robardet, C. (2008). Description and simulation of dynamic mobility networks. Computer Networks, 52, 2842.

    Article  MATH  Google Scholar 

  28. Barrat, A., Cattuto, C., Tozzi, A. E., Vanhems, P., & Voirin, N. (2014). Measuring contact patterns with wearable sensors: Methods, data characteristics and applications to data-driven simulations of infectious diseases. Clinical Microbiology and Infection, 20, 10–16.

    Article  Google Scholar 

  29. Barabási, A. -L. (2010). Bursts: The hidden pattern behind everything we do. London: Dutton Adult.

    Google Scholar 

  30. Fournet, J., & Barrat, A. (2014). Contact patterns among high-school students. PLoS One, 9(9), e107878.

    Article  ADS  Google Scholar 

  31. Isella, I., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J. F., & Van den Broeck, W. (2011). What’s in a crowd? Analysis of face-to-face behavioral networks. Journal of Theoretical Biology, 271, 166–180.

    Article  MathSciNet  Google Scholar 

  32. www.gephi.org.

  33. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., et al. (2011). High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One, 6, e23176.

    Article  ADS  Google Scholar 

  34. Génois, M., Vestergaard, C., Fournet, J., Panisson, A., Bonmarin, I., & Barrat, A. (2015). Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers. Network Science. arXiv:1409.7017.

    Google Scholar 

  35. Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., et al. (2011). Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One, 6, e17144.

    Article  ADS  Google Scholar 

  36. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J. -F., Khanafer, N., Régis, C., et al. (2013). Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One, 8(9), 73970.

    Article  ADS  Google Scholar 

  37. Matson, J. (2012). RFID tags track possible outbreak pathways in the hospital. Scientific American, 307. http://www.scientificamerican.com/article/graphic-science-rfids-tags-track-possible-outbreak-pathways-in-hospital/

  38. Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A. E., Barrat, A., & Cattuto, C. (2013). An infectious disease model on empirical networks of human contact: Bridging the gap between dynamic network data and contact matrices. BMC Infectious Diseases, 13, 185.

    Article  Google Scholar 

  39. Eames, K. T. D., Tilston, N. D., & Edmunds, W. J. (2011). The impact of school holidays on the social mixing patterns of school children. Epidemics, 3, 103.

    Article  Google Scholar 

  40. Gauvin, L., Panisson, P., Cattuto, C., & Barrat, A. (2013). Activity clocks: Spreading dynamics on temporal networks of human contact. Scientific Reports, 3, 3099.

    Article  ADS  Google Scholar 

  41. Yang, J., McAuley, J., & Leskovec, J. (2014). Detecting cohesive and 2-mode communities indirected and undirected networks. In Proceedings of 7th ACM International Conference on Web Search and Data Mining (WSDM2014) (pp. 323–332).

    Google Scholar 

  42. Chen, Y., Kawadia, V., & Urgaonkar, R. (2013). Detecting overlapping temporal community structure in time-evolving networks. arXiv:1303.7226.

    Google Scholar 

  43. Hopcroft, J., Khan, O., Kulis, B., & Selman, B. (2004). Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences, 101(1), 5249–5253.

    Article  ADS  Google Scholar 

  44. Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolution of communities in dynamic social networks. In Proceedings of 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM2010) (pp. 176–183).

    Google Scholar 

  45. Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., & Mucha, P. J. (2013). Robust detection of dynamic community structure in networks. Chaos, 23(1), 013142.

    Article  ADS  Google Scholar 

  46. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. -P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328, 876–878.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ronhovde, P., Chakrabarty, S., Hu, D., Sahu, M., Sahu, K. K., Kelton, K. F., et al. (2012). Detection of hidden structures for arbitrary scales in complex physical systems. Scientific Reports, 2, 329.

    Article  ADS  Google Scholar 

  48. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., et al. (2013). Mathematical formulation of multi-layer networks. Physical Review X, 3, 041022.

    Article  ADS  Google Scholar 

  49. Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Cichocki, A., Phan, A. H., & Zdunek, R. (2009). Nonnegative matrix and tensor factorizations: Applications to exploratory multi-way data analysis and blind source separation. New York: Wiley.

    Book  Google Scholar 

  51. Shashua, A., & Hazan, T. (2005). Non-negative tensor factorization with applications to statistics and computer vision. In Proceedings of 22nd International Conference on Machine Learning (ICML2005) (pp. 792–799).

    Google Scholar 

  52. Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791.

    Article  ADS  Google Scholar 

  53. Gauvin, L., Panisson, A., & Cattuto, C. (2014). Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. PLoS One, 9(1), e86028.

    Article  ADS  Google Scholar 

  54. Nickel, M., Tresp, V., & Kriegel, H. P. (2011). A three-way model for collective learning on multi-relational data. In Proceedings of 28th International Conference on Machine Learning (ICML2011) (pp. 809–816).

    Google Scholar 

  55. Yang, J., & Leskovec, J. (2013). Overlapping community detection at scale: A nonnegative matrix factorization approach. In Proceedings of 6th ACM International Conference on Web Search and Data Mining (WSDM2013) (pp. 587–596)

    Google Scholar 

  56. Wang, F., Li, T., Wang, X., Zhu, S., & Ding, C. (2011). Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery, 22(3), 493–521.

    Article  MathSciNet  MATH  Google Scholar 

  57. Gross, T., & Sayama, H. (Eds.). (2008). Adaptive networks: Theory, models and applications. Springer/NECSI Studies on Complexity Series. Berlin: Springer.

    Google Scholar 

  58. Stehlé, J., Barrat, A., & Bianconi, G. (2010). Dynamical and bursty interactions in social networks. Physical Review E, 81, 035101(R).

    Google Scholar 

  59. Zhao, K., Stehlé, J., Bianconi, G., & Barrat, A. (2011). Social network dynamics of face-to-face interactions. Physical Review E, 83, 056109.

    Article  ADS  Google Scholar 

  60. Vestergaard, C. L., Génois, M., & Barrat, A. (2014). How memory generates heterogeneous dynamics in temporal networks. Physical Review E, 90, 042805.

    Article  ADS  Google Scholar 

  61. Starnini, M., Baronchelli, A., & Pastor-Satorras, R. (2013). Modeling human dynamics of face-to-face interaction networks. Physical Review Letters, 110, 168701.

    Article  ADS  Google Scholar 

  62. Starnini, M., Baronchelli, A., & Pastor-Satorras, R. (2014). Model reproduces individual, group and collective dynamics of human contact networks. arXiv:1409.0507.

    Google Scholar 

  63. Gemmetto, V., Barrat, A., & Cattuto, C. (2014). Mitigation of infectious disease at school: Targeted class closure vs school closure. BMC Infect. Dis. 14, 695

    Article  Google Scholar 

  64. Eames, K., Bansal, S., Frost, S., & Riley, S. (2015). Six challenges in measuring contact networks for use in modelling. Epidemics, 10, 72–77.

    Article  Google Scholar 

  65. Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., & Vespignani, A. (2011). Modeling human mobility responses to the large-scale spreading of infectious diseases. Scientific Reports,1, 62.

    Google Scholar 

  66. Perra, N., Balcan, D., Gonçalves, B., & Vespignani, A. (2011). Towards a characterization of behavior-disease models. PLoS One, 6(8), e23084.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Lagrange Project of the ISI Foundation funded by the CRT Foundation to AB, and CC, by the Q-ARACNE project funded by the Fondazione Compagnia di San Paolo to CC, by the HarMS-flu project (ANR-12-MONU-0018) funded by the French ANR to AB, and by the FET Multiplex Project (EU-FET-317532) funded by the European Commission to AB and CC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Barrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barrat, A., Cattuto, C. (2015). Face-to-Face Interactions. In: Gonçalves, B., Perra, N. (eds) Social Phenomena. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14011-7_3

Download citation

Publish with us

Policies and ethics