Skip to main content

Abstract

The chapter is devoted to the application of isoconversional methods to the phase transitions in one- and two-component systems. The one-component phase transitions include vaporization and sublimation, glass transition and aging, crystallization and melting of polymers, and morphological solid–solid transitions. The two-component phase transitions are the transitions in solutions. They include mixing and demixing, gelation and gel melting, and helix–coil transitions. Each transition is discussed in a separate section that identifies basic kinetic models that can be used to understand how the effective activation energy can vary throughout the transition. It is demonstrated that in many cases one can evaluate the parameters of the models by fitting the theoretical dependence of the activation energy to the experimental one. The chapter features multiple experimental examples of the isoconversional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tammann G (1925) The states of aggregation. van Nostrand, New York

    Google Scholar 

  2. Lide DR (ed) (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. Debenedetti PG (1996) Metastable liquids. Concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  4. Papon P, Leblond J, Meijer PHE (2002) The physics of phase transitions. Springer, Berlin

    Google Scholar 

  5. Ehrenfest P (1933) Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Proc Kon Akad Wetensch Amsterdam 36:153–157

    CAS  Google Scholar 

  6. Rao CNR, Rao KJ (1978) Phase transitions in solids. McGraw-Hill, New York

    Google Scholar 

  7. West AR (1992) Solid state chemistry and its applications. Wiley, Chichester

    Google Scholar 

  8. Bernstein J (2008) Polymorphism in molecular crystals. Oxford University Press, Oxford

    Google Scholar 

  9. Aasland S, McMillan PF (1994) Density driven liquid-liquid phase separation in the system Al2O3-Y2O3. Nature 369:633–636

    CAS  Google Scholar 

  10. Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K (2000) A first-order liquid-liquid phase transition in phosphorus. Nature 403:170–173

    CAS  Google Scholar 

  11. Kurita R, Tanaka H (2004) Critical-like phenomena associated with liquid-liquid transition in a molecular liquid. Science 306:845–848

    CAS  Google Scholar 

  12. Kurita R, Tanaka H (2005) On the abundance and general nature of the liquid–liquid phase transition in molecular systems. J Phys Condens Matter 17:L293–L302

    CAS  Google Scholar 

  13. Guenet J-M (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London

    Google Scholar 

  14. Collings PJ (2002) Liquid crystals. Nature’s delicate phase of matter. Princeton University Press, Princeton

    Google Scholar 

  15. Langmuir I (1913) Chemical reactions at very low pressures. J Am Chem Soc 35:105–127

    CAS  Google Scholar 

  16. Langmuir I (1913) The vapor pressure of metallic tungsten. Phys Rev 2:329–342

    Google Scholar 

  17. Knudsen M (1909) Die Molekularströmung der Gase durch Offnungen und die Effusion. Ann Phys 333:999–1909

    Google Scholar 

  18. Atkins P, de Paula J (2010) Physical chemistry, 9th edn. W.H. Freeman, New York

    Google Scholar 

  19. Price DM, Hawkins M (1998) Calorimetry of two disperse dyes using thermogravimetry. Thermochim Acta 315:19–24

    CAS  Google Scholar 

  20. Chatterjee K, Dollimore D, Alexander K (2001) A new application for the Antoine equation in formulation development. Int J Pharm 213:31–44

    CAS  Google Scholar 

  21. Pieterse N, Focke WW (2003) Diffusion-controlled evaporation through a stagnant gas: estimating low vapour pressures from thermogravimetric data. Thermochim Acta 406:191–198

    CAS  Google Scholar 

  22. Seager SL, Geertson LR, Giddings JC (1963) Temperature dependence of gas and vapor diffusion coefficients. J Chem Eng Data 8:168–169

    CAS  Google Scholar 

  23. Vecchio S, Di Rocco R, Ferragina C (2008) Kinetic analysis of the oxidative decomposition in γ-zirconium and γ-titanium phosphate intercalation compounds. The case of 2,2’-bipyridyl and its copper complex formed in situ. Thermochim Acta 467:1–10

    CAS  Google Scholar 

  24. Vyazovkin S, Clawson JS, Wight CA (2001) Thermal dissociation kinetics of solid and liquid ammonium nitrate. Chem Mater 13:960–966

    CAS  Google Scholar 

  25. Cheng Y, Huang Y, Alexander K, Dollimore D (2001) A thermal analysis study of methyl salicylate. Thermochim Acta 367–368:23–28

    Google Scholar 

  26. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23

    CAS  Google Scholar 

  27. Prado JR, Vyazovkin S (2011) Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders. Thermochim Acta 524:197–201

    CAS  Google Scholar 

  28. Ashcroft AS (1972) The measurement of enthalpies of sublimation by thermogravimetry. Thermochim Acta 2:512–514

    Google Scholar 

  29. Somorjai GA (1968) Mechanism of sublimation. Science 162:755–760

    CAS  Google Scholar 

  30. Vyazovkin S, Dranca I (2004) A DSC study of α- and β-relaxations in a PS-clay system. J Phys Chem B 108:11981–11987

    CAS  Google Scholar 

  31. Johari GP, Goldstein M (1970) Viscous liquids and glass transition. II. Secondary relaxation in glasses of rigid molecules. J Chem Phys 53:2372–2388

    CAS  Google Scholar 

  32. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    CAS  Google Scholar 

  33. Di Marzio EA, Yang AJM (1997) Configurational entropy approach to the kinetics of glasses. J Res Natl Inst Stand Technol 102:135–157

    CAS  Google Scholar 

  34. Perez J, Cavaille JY (1995) Thermally stimulated creep: theoretical understanding of the compensation law. J Phys III 5:791–805

    CAS  Google Scholar 

  35. Vyazovkin S, Dranca I (2006) Activation energies derived from the pre-glass transition annealing peaks. Thermochim Acta 446:140–146

    CAS  Google Scholar 

  36. Faivre A, Niquet G, Maglione M, Fornazero J, Jal JF, David L (1999) Dynamics of sorbitol and maltitol over a wide time-temperature range. Eur Phys J B 10:277–286

    CAS  Google Scholar 

  37. Beiner M, Garwe F, Schroter K, Donth E (1994) Ageing effects on dynamic shear moduli at the onset of the dynamic glass transition in two poly(alkyl methacrylate)s. Polymer 35:4127–4132

    CAS  Google Scholar 

  38. Chen HS, Morito N (1985) Sub-T g αʹ relaxation in a PdCuSi glass; internal friction measurements. J Non-Cryst Solids 72:287–299

    CAS  Google Scholar 

  39. Colmenero J, Alegria A, Alberdi JM, del Val JJ, Ucar G (1987) New secondary relaxation in polymeric glasses: a possible common feature of the glassy state. Phys Rev B 35:3995–4000

    CAS  Google Scholar 

  40. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266

    CAS  Google Scholar 

  41. Vyazovkin S, Dranca I (2005) Physical stability and relaxation of amorphous indomethacin. J Phys Chem B 109:18637–18644

    CAS  Google Scholar 

  42. Moynihan CT, Eastel AJ, Wilder J, Tucker J (1974) Dependence of the glass transition temperature of heating and cooling rate. J Phys Chem 78:2673–2677

    CAS  Google Scholar 

  43. Moynihan CT, Lee SK, Tatsumisago M, Minami M (1996) Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta 280/281:153–162

    CAS  Google Scholar 

  44. Vyazovkin S, Sbirrazzuoli N, Dranca I (2006) Variation in activation energy of the glass transition for polymers of different dynamic fragility. Macromol Chem Phys 207:1126–1130

    CAS  Google Scholar 

  45. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J Chem Phys 43:139–146

    CAS  Google Scholar 

  46. Vyazovkin S, Sbirrazzuoli N, Dranca I (2004) Variation of the effective activation energy throughout the glass transition. Macromol Rapid Commun 25:1708–1713

    CAS  Google Scholar 

  47. Angell CA, Stell RC, Sichina W (1982) Viscosity-temperature function for sorbitol from combined viscosity and differential scanning calorimetry studies. J Phys Chem 86:1540–1542

    CAS  Google Scholar 

  48. Lacey D, Nestor G, Richardson MJ (1994) Structural recovery in isotropic and smectic glasses. Thermochim Acta 238:99–111

    CAS  Google Scholar 

  49. Hancock BC, Dalton CR, Pikal MJ, Shamblin SL (1998) A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm Res 15:762–767

    CAS  Google Scholar 

  50. Badrinarayanan P, Zheng W, Simon SL (2008) Isoconversion analysis of the glass transition. Thermochim Acta 468:87–93

    CAS  Google Scholar 

  51. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids 131–133:13–31

    Google Scholar 

  52. Bohmer R, Angell CA (1993) Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures. Phys Rev B 48:5857–5864

    CAS  Google Scholar 

  53. Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209

    Google Scholar 

  54. Huang D, Colucci DM, McKenna GB (2002) Dynamic fragility in polymers: a comparison in isobaric and isochoric conditions. J Chem Phys 116:3925–3934

    CAS  Google Scholar 

  55. Beiner M, Huth H, Schroter K (2001) Crossover region of dynamic glass transition: general trends and individual aspects. J Non-Cryst Solids 279:126–135

    CAS  Google Scholar 

  56. Roland CM, Santangelo PG, Ngai KL (1999) The application of the energy landscape model to polymers. J Chem Phys 111:5593–5598

    CAS  Google Scholar 

  57. Nogales A, Denchev Z, Sics I, Ezquerra TA (2000) Influence of the crystalline structure in the segmental mobility of semicrystalline polymers: poly(ethylene naphthalene-2,6-dicarboxylate). Macromolecules 33:9367–9375

    CAS  Google Scholar 

  58. Bravard SP, Boyd RH (2003) Dielectric relaxation in amorphous poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalene dicarboxylate) and their copolymers. Macromolecules 36:741–748

    CAS  Google Scholar 

  59. Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier, Amsterdam

    Google Scholar 

  60. Nemilov SV (2000) Physical ageing of silicate glasses at room temperature: general regularities as a basis for the theory and the possibility of a priori calculation of the ageing rate. Glass Phys Chem 26:511–530

    CAS  Google Scholar 

  61. Nemilov SV (2001) Physical ageing of silicate glasses at room temperature: the choice of quantitative characteristics of the process and the ranking of glasses by their tendency to ageing. Glass Phys Chem 27:214–227

    CAS  Google Scholar 

  62. Nemilov SV, Johari GP (2003) A mechanism for spontaneous relaxation of glass at room temperature. Philos Mag 21:3117–3132

    Google Scholar 

  63. Tanaka Y, Yamamoto T (2012) Enthalpy relaxation of comb-like polymer analysed by combining activation energy spectrum and TNM models. J Non-Cryst Solids 358:1687–1698

    CAS  Google Scholar 

  64. Petrie SEB (1972) Thermal behavior of annealed organic glasses. J Polym Sci Part A-2 10:1255–1272

    CAS  Google Scholar 

  65. Chen K, Vyazovkin S (2009) Isoconversional kinetics of glass aging. J Phys Chem B 113:4631–4635

    CAS  Google Scholar 

  66. Vyazovkin S, Dranca I (2007) Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B 111:7283–7287

    CAS  Google Scholar 

  67. Donth E (2001) The glass transition: relaxation dynamics in liquids and disordered materials. Springer, Berlin

    Google Scholar 

  68. Rault J (2003) Ageing of glass: role of the Vogel-Fulcher-Tamman law. J Phys Condens Matter 15: S1193–S1213

    CAS  Google Scholar 

  69. McKenna GB, Simon SL (2002) The glass transition- its measurement and underlying physics. In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry, vol 3. Elsevier, Amsterdam, pp 49–109

    Google Scholar 

  70. Vyazovkin S, Chen K (2007) Increase in effective activation energy during physical aging of a glass. Chem Phys Lett 448:203–207

    CAS  Google Scholar 

  71. Tombari E, Presto S, Salvetti G, Johari GP (2002) Spontaneous decrease in heat capacity of a glass. J Chem Phys 117:8436–8441

    CAS  Google Scholar 

  72. Fukao K, Sakamoto A, Kubota Y, Saruyama Y (2005) Aging phenomena in poly(methyl methacrylate) by dielectric spectroscopy and temperature modulated DSC. J Non-Cryst Solids 351:2678–2684

    CAS  Google Scholar 

  73. Faivre A, Niquet G, Maglione M, Fornazero J, Jal JF, David L (1999) Dynamics of sorbitol and maltitol over a wide time temperature range. Eur Phys J B 10:277–286

    CAS  Google Scholar 

  74. Carpentier L, Descamps M (2003) Dynamic decoupling and molecular complexity of glass-forming maltitol. J Phys Chem B 107:271–275

    CAS  Google Scholar 

  75. Cangialosi D, Wubbenhorst M, Schut H, van Veen A, Picken SJ (2004) Dynamics of polycarbonate far below the glass transition temperature: a positron annihilation lifetime study. Phys Rev B 69:134206-1–134206-9

    Google Scholar 

  76. Hu L, Yue YZ (2008) Secondary relaxation behavior in a strong glass. J Phys Chem B 112:9053

    CAS  Google Scholar 

  77. van den Beukel A (1986) Analysis of chemical short range ordering in amorphous Fe40Ni40B20. J Non-Cryst Solids 83:134–140

    Google Scholar 

  78. Koebrugge GW, Sietsma J, van den Beukel A (1992) Structural relaxation in amorphous Pd40Ni40P20. Acta Metall Mater 40:753–760

    CAS  Google Scholar 

  79. Bershtein VA, Egorov VM (1994) Differential scanning calorimetry of polymers: physics, chemistry, analysis, technology. Ellis Horwood Ltd, New York

    Google Scholar 

  80. Illers KH (1969) Einfluβ der thermischen Vorgeschichte auf die Eigenschaften von Polyvinylchlorid. Makromol Chem 127:1–33

    CAS  Google Scholar 

  81. Chen HS (1981) On mechanisms of structural relaxation in a Pd48Ni32P20 glass. J Non-Cryst Solids 46:289–305

    CAS  Google Scholar 

  82. Chen HS (1981) Kinetics of low temperature structural relaxation in two (Fe-Ni)-based metallic glasses. J Appl Phys 52:1868–1870

    CAS  Google Scholar 

  83. Bershtein VA, Egorov VM, Emelyanov YA, Stepanov VA (1983) The nature of β-relaxation in polymers. Polym Bull 9:98–105

    CAS  Google Scholar 

  84. Bershtein VA, Yegorov VM (1985) General mechanism of the β-transition in polymers. Polym Sci USSR 27:2743–2757

    Google Scholar 

  85. McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids. Dover, New York

    Google Scholar 

  86. Hedvig P (1977) Dielectric spectroscopy of polymers. Wiley, New York

    Google Scholar 

  87. Vyazovkin S, Dranca I (2006) Probing beta relaxation in pharmaceutically relevant glasses by using DSC. Pharm Res 23:422–428

    CAS  Google Scholar 

  88. Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rössler E (1999) The dielectric response of simple organic glass formers. J Mol Struct 479:201–218

    CAS  Google Scholar 

  89. Ngai KL, Capaccioli S (2004) Relation between the activation energy of the Johari-Goldstein β-relaxation and Tg of glass formers. Phys Rev E 69:031501-1–031501-5

    Google Scholar 

  90. Boyer RF (1976) Mechanical motions in amorphous and semi-crystalline polymers. Polymer 17:996–1008

    CAS  Google Scholar 

  91. Vyazovkin S (2008) Isoconversional kinetics. In: Brown ME, Gallagher PK (eds). The handbook of thermal analysis & calorimetry, vol 5: recent advances, techniques and applications. Elsevier, Amsterdam, pp 503–538

    Google Scholar 

  92. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73

    CAS  Google Scholar 

  93. Mandelkern L (2004) Crystallization of polymers, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  94. Schultz JM (2001) Polymer crystallization. ACS & Oxford University Press, New York

    Google Scholar 

  95. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  96. Avrami M (1940) Kinetics of phase change. II Transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224

    CAS  Google Scholar 

  97. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    CAS  Google Scholar 

  98. Hong PD, Chung WT, Hsu CF (2002) Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer 43:3335–3343

    CAS  Google Scholar 

  99. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    CAS  Google Scholar 

  100. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    CAS  Google Scholar 

  101. Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775

    CAS  Google Scholar 

  102. Cheng SZD, Jin S (2002) Crystallization and melting of metastable crystalline polymers. In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry, vol 3. Elsevier, Amsterdam, pp 167–195

    Google Scholar 

  103. Hoffman JD, Lauritzen JI Jr (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336

    CAS  Google Scholar 

  104. Hoffman JD, Davis GT, Lauritzen JI Jr (1976) The rate of crystallization of linear polymers with chain folding In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, New York, pp 497–614

    Google Scholar 

  105. Toda A, Oda T, Hikosaka M, Saruyama Y (1997) A new method of analysing transformation kinetics with temperature modulated differential scanning calorimetry: application to polymer crystal growth. Polymer 38:231–233

    CAS  Google Scholar 

  106. Toda A, Arita T, Tomita C, Masamichi H (1999) Temperature-modulated DSC applied to the transformation kinetics of polymer crystallization. Polymer J 31:790–794

    CAS  Google Scholar 

  107. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25:733–738

    CAS  Google Scholar 

  108. Vyazovkin S, Dranca I (2006) Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys 207:20–25

    CAS  Google Scholar 

  109. Shultz JM, Fakirov S (1990) Solid state behavior of linear polyesters and polyamides. Prentice Hall, Engelwood Cliffs

    Google Scholar 

  110. Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42:9423–9431

    CAS  Google Scholar 

  111. Rahman MH, Nandi AK (2002) On the crystallization mechanism of poly(ethylene terepthalate) in its blends with poly(vinylidene fluoride). Polymer 43:6863–6870

    CAS  Google Scholar 

  112. Okamoto M, Shinoda Y, Kinami N, Okuyama T (1995) Nonisothermal crystallization of poly(ethylene terephthalate) and its blends in the injection-molding process. J Appl Polym Sci 57:1055–1061

    CAS  Google Scholar 

  113. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  114. Phillips PJ, Tseng HT (1989) Influence of pressure on crystallization in poly(ethylene terephthalate). Macromolecules 22:1649–1655

    CAS  Google Scholar 

  115. Runt J, Miley DM, Zhang X, Gallagher KP, McFeaters K, Fishburn J (1992) Crystallization of poly(butylene terephthalate) and its blends with polyarylate. Macromolecules 25:1929–1934

    CAS  Google Scholar 

  116. Hwang CJ, Chen CC, Chen HL, Yang WCO (1997) Analysis of two-stage crystallization kinetics for poly(ethylene terephthalate)/ poly(ether imide) blends. Polymer 38:4097–4101

    CAS  Google Scholar 

  117. Chan TW, Isaev AI (1994) Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci 34:461–471

    CAS  Google Scholar 

  118. Wu TM, Chang CC, Yu TL (2000) Crystallization of poly(ethylene terephthalate-co-isophthalate). J Polym Sci B Polym Phys 38:2515–2524

    CAS  Google Scholar 

  119. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. J Phys Chem B 117:3407–3415

    CAS  Google Scholar 

  120. Bosq N, Guigo N, Persello J, Sbirrazzuoli N (2014) Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys Chem Chem Phys 16:7830–7840

    CAS  Google Scholar 

  121. Toda A, Hikosaka M, Yamada K (2002) Superheating of the melting kinetics in polymer crystals: a possible nucleation mechanism. Polymer 43:1667–1679

    CAS  Google Scholar 

  122. Kovacs AJ, Gonthier A, Straupe C (1975) Isothermal growth, thickening, and melting of poly(ethylene oxide) crystals in the bulk. J Polym Sci Polym Symp 50:283–325

    CAS  Google Scholar 

  123. Minakov AA, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E 23:43–53

    CAS  Google Scholar 

  124. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461:96–106

    CAS  Google Scholar 

  125. Toda A, Kojima I, Hikosaka M (2008) Melting kinetics of polymer crystals with an entropic barrier. Macromolecules 41:120–127

    CAS  Google Scholar 

  126. Sasaki T (2013) Melting of poly(ε-caprolactone) studied by step-heating calorimetry. J Therm Anal Calorim 111:717–724

    CAS  Google Scholar 

  127. Toda A Private communication

    Google Scholar 

  128. Cheng SZD (2008) Phase transitions in polymers. Elsevier, Amsterdam

    Google Scholar 

  129. Vyazovkin S, Yancey B, Walker K (2013) Nucleation driven kinetics of poly(ethylene terephthalate) melting. Macromol Chem Phys 214:2562–2566

    CAS  Google Scholar 

  130. Vyazovkin S, Burnham A K, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    CAS  Google Scholar 

  131. Vyazovkin S, Yancey B, Walker K (2014) Polymer melting kinetics appears to be driven by heterogeneous nucleation. Macromol Chem Phys 215:205–209

    CAS  Google Scholar 

  132. Lippits DR, Rastogi S, Hohne GWH (2006) Melting kinetics in polymers. Phys Rev Lett 96:218303-1–218303-4

    Google Scholar 

  133. Illers KH (1974) Die Ermittlung des Schmelzpunktes von Kristallinen Polymeren mittels Warmeflusskalorimetrie (DSC). Eur Pol J 10:911–916

    CAS  Google Scholar 

  134. Thomas DG, Staveley LAK (1952) A study of the supercooling of drops of some molecular liquids. J Chem Soc 4569–4577

    Google Scholar 

  135. Wunderlich B (1980) Macromolecular physics, vol 3, Academic, New York

    Google Scholar 

  136. Maddox J (1987) Melting is merely skin-thick. Nature 330:599

    Google Scholar 

  137. Dash JG (1999) History of the search for continuous melting. Rev Mod Phys 71:1737–1743

    CAS  Google Scholar 

  138. Devoy C, Mandelkern L (1970) On the heterogeneous nucleation of long-chain molecules. J Chem Phys 52:3827–3830

    CAS  Google Scholar 

  139. Israelachvili J (1991) Intermolcular & surface forces, 2nd edn. Academic, Amsterdam

    Google Scholar 

  140. Hendricks SB, Posnjak E., Kracek FC (1932) Molecular rotation in the solid state. The variation of the crystal structure of ammonium nitrate with temperature. J Am Chem Soc 54:2766–2786

    CAS  Google Scholar 

  141. Mnyukh Yu (2009) Fundamentals of solid-state phase transitions, ferromagnetism and ferroelectricity, 2nd edn. Yuri Mnyukh, Farmington

    Google Scholar 

  142. Villafuerte-Castrejon ME, West AR (1981) Kinetics of polymorphic transitions in tetrahedral structures. Part 2. Temperature dependence of the transition β ↔ γ Li2ZnSiO4. J Chem Soc Faraday Trans I 77:2297–2307

    CAS  Google Scholar 

  143. Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials. Wiley, Hoboken

    Google Scholar 

  144. Riggin MT, Knispel RR, Pintar MM (1972) Cation diffusion study in NH4NO3 by proton spin relaxation. J Chem Phys 56:2911–2918

    CAS  Google Scholar 

  145. Mullin JW (2002) Crystallization, 4th edn. Butterworth, Oxford

    Google Scholar 

  146. Campbell AN, Kartzmark EM (1969) Heats of mixing and dielectric constants of some partially miscible liquid pairs. Can J Chem 47:619–623

    CAS  Google Scholar 

  147. Kohler F, Rice OK (1957) Coexistence curve of the triethylamine-water system. J Chem Phys 26:1614–1618

    CAS  Google Scholar 

  148. Vyazovkin S, Sbirrazzuoli N (2000) Effect of viscosity on the kinetics of initial cure stages. Macromol Chem Phys 201:199–203

    CAS  Google Scholar 

  149. Glasstone S, Laidler K, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  150. Kartzmark EM (1967) System triethylamine-water: the equilibrium diagram and some physical properties. Can J Chem 45:1089–1091

    CAS  Google Scholar 

  151. Lark BS, Patyar P, Banipal TS (2007) Temperature effect on the viscosity and heat capacity behaviour of some amino acids in water and aqueous magnesium chloride solutions. J Chem Thermodyn 39:344–360

    CAS  Google Scholar 

  152. Flory PJ (1974) Introductory lecture. Faraday Discuss Chem Soc 57:229–241

    Google Scholar 

  153. de Gennes (1985) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  154. Tan HM, Moet A, Hiltner A, Baer E (1983) Thermoreversible gelation of atactic polystyrene solutions. Macrmolecules 16:28–34

    CAS  Google Scholar 

  155. Eliassaf J, Silberberg A (1962) The gelation of aqueous solutions of polymethacrylic acid. Polymer 3:555–564

    CAS  Google Scholar 

  156. Heymann E (1935) Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water. Trans Faraday Soc 31:846–864

    CAS  Google Scholar 

  157. Doolittle AK (1946) Mechanism of solvent section. Influence of molecular size and shape on temperature dependence of solvent ability. Ind Chem Eng 38:535–540

    CAS  Google Scholar 

  158. Godard P, Biebuyck JJ, Daumerie M, Naveau H, Mercier JP (1978) Crystallization and melting of aqueous gelatin. J Polym Sci Polym Phys Ed 16:1817–1828

    CAS  Google Scholar 

  159. Domszy RC, Alamo R, Edwards CO, Mandelkern L (1986) Thermoreversible gelation and crystallization of homopolymers and copolymers. Macromolecules 19:310–325

    CAS  Google Scholar 

  160. Boedtker H, Doty P (1954) A study of gelatin molecules, aggregates and gels. J Phys Chem 58:968–983

    CAS  Google Scholar 

  161. Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys France 49:319–332

    CAS  Google Scholar 

  162. Guo L, Colby RH, Lusignan CP, Whitesides TH (2003) Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules 36:9999–10008

    CAS  Google Scholar 

  163. Flory PJ, Weaver ES (1960) Helix ↔ coil transition in dilute aqueous collagen solutions. J Am Chem Soc 82:4518–4525

    CAS  Google Scholar 

  164. Guigo N, Sbirrazzuoli N, Vyazovkin S (2012) Atypical gelation in gelatin solutions probed by ultra fast calorimetry. Soft Matter 8:7116–7121

    CAS  Google Scholar 

  165. Chen K, Vyazovkin S (2009) Temperature dependence of sol-gel conversion kinetics in gelatin-water system. Macromol Biosci 9:383–392

    CAS  Google Scholar 

  166. Ohkura M, Kanaya T, Kaji K (1992) Gelation rates of poly(vinyl alcohol) solution. Polymer 33:5044–5048

    CAS  Google Scholar 

  167. Malik S, Jana T, Nandi AK (2001) Thermoreversible gelation of regioregular poly(3-hexylthiophene) in xylene. Macromolecules 34:274–282

    Google Scholar 

  168. Dikshit AK, Nandi AK (2001) Gelation mechanism of thermoreversible gels of poly(vinylidene fluoride) and its blends with poly(methyl acrylate) in diethyl azelate. Langmuir 17:3607–3615

    CAS  Google Scholar 

  169. Chen K, Baker AN, Vyazovkin S (2009) Concentration effect on temperature dependence of gelation rate in aqueous solutions of methylcellulose. Macromol Chem Phys 210:211–216

    CAS  Google Scholar 

  170. Harrington WF, Rao NV (1970) Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelatins. Biochemistry 9:3714–3724

    CAS  Google Scholar 

  171. Eagland D, Pilling G, Wheeler RG (1974) Studies of the collagen fold formation and gelation in solutions of a monodisperse α gelatin. Faraday Discuss 57:181–200

    CAS  Google Scholar 

  172. Michon C, Cuvelier G, Launay B (1993) Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol Acta 32:94–103

    CAS  Google Scholar 

  173. Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077

    CAS  Google Scholar 

  174. Stolin AM, Merzhanov AG, Malkin AYa (1979) Non-isothermal phenomena in polymer engineering and science: a review-2. Non-isothermal phenomena in polymer deformation. Polym Eng Sci 19:1074–1080

    CAS  Google Scholar 

  175. Takahashi M, Shimazaki M, Yamamoto J (2001) Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci B 39:91–100

    CAS  Google Scholar 

  176. Guigo N, Sbirrazzuoli N, Vyazovkin S (2012) Gelation on heating of supercooled gelatin solutions. Macromol Rapid Commun 33:698–702

    CAS  Google Scholar 

  177. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(ε-caprolactone) (PCL). Polymer 52:1983–1997

    CAS  Google Scholar 

  178. Dranca I, Vyazovkin S (2009) Thermal stability of gelatin gels: effect of preparation conditions on the activation energy barrier to melting. Polymer 50:4859–4867

    CAS  Google Scholar 

  179. te Nijenhuis K (1981) Investigation into the ageing process in gels of gelatin/water systems by the measurement of their dynamic moduli—Part II: mechanism of the ageing process. Colloid Polym Sci 259:1017–1026

    CAS  Google Scholar 

  180. Teramoto A (2001) Cooperative conformational transitions in linear macromolecules undergoing chiral perturbations. Prog Polym Sci 26:667–720

    CAS  Google Scholar 

  181. Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11–29

    CAS  Google Scholar 

  182. Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

    CAS  Google Scholar 

  183. Lepock JR, Ritchie KP, Kolios MC, Rodahl AM, Heinz KA, Kruuv J (1992) Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31:12706–12712

    CAS  Google Scholar 

  184. Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61:921–935

    CAS  Google Scholar 

  185. Vyazovkin S, Vincent L, Sbirrazzuoli N (2007) Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci 7:1181–1186

    CAS  Google Scholar 

  186. Wright NT, Humphrey JD (2002) Denaturation of collagen via heating: an irreversible rate process. Annu Rev Biomed Eng 4:109–128

    CAS  Google Scholar 

  187. Bischof JC, He XM (2005) Thermal stability of proteins. Ann NY Acad Sci 1066:1–22

    Google Scholar 

  188. Weir CE (1949) Effect of temperature on the volume of leather and collagen in water. J Res Nat Bur Stand 42:17–32

    CAS  Google Scholar 

  189. Wright NT (2003) On a relationship between the Arrhenius parameters from thermal damage studies. J Biomed Eng 125:300–304

    Google Scholar 

  190. Jacques SL (2006) Ratio of entropy to enthalpy in thermal transitions in biological tissues. J Biomed Opt 11:041108-1–041108-7

    Google Scholar 

  191. Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76:3243–3252

    CAS  Google Scholar 

  192. Miles CA, Burjanadze TV, Bailey AJ (1995) The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol 245:437–446

    CAS  Google Scholar 

  193. Liu W, Li G (2010) Non-isothermal kinetic analysis of the thermal denaturation of type I collagen in solution using isoconversional and multivariate non-linear regression methods. Polym Degrad Stab 95:2233–2240

    CAS  Google Scholar 

  194. Xia Z, Calderon-Colon X, Trexler M, Elisseeff J, Guo Q (2012) Thermal denaturation of type I collagen vitrified gels. Thermochim Acta 527:172–179

    CAS  Google Scholar 

  195. Budrugeac P, Cucos A (2013) Application of Kissinger, isoconversional multivariate non-linear regression methods for evaluation of the mechanism and kinetic parameters of phase transitions of type I collagen. Thermochim Acta 565:241–252

    CAS  Google Scholar 

  196. Liu W, Tian Z, Li C, Li G (2014) Thermal denaturation of fish collagen in solution: a calorimetric and kinetic analysis. Thermochimica Acta 581:32–40

    CAS  Google Scholar 

  197. Cao X, Wang Z, Liu Y, Wang C, Tian Y (2010) Effect of additive on the thermal denaturation of lysozyme analyzed by isoconversional method. Acta Chim Sinica 68:194–198

    CAS  Google Scholar 

  198. Cao X, Tian Y, Wang Z, Liu Y, Wang C (2014) Protein denaturation kinetic processes of a simple and a complex reaction mechanism analyzed by an iso-conversional method. J Therm Anal Calorim 117:1489–1495

    CAS  Google Scholar 

  199. Istrate D, Popescu C, Moller M (2009) Non-isothermal kinetics of hard α-keratin thermal denaturation. Macromol Biosci 9:805–812

    CAS  Google Scholar 

  200. Cao X, Li J, Yang X, Duan Y, Liu Y, Wang C (2008) Nonisothermal kinetic analysis of the effect of protein concentration on BSA aggregation at high concentration by DSC. Thermochim Acta 467:99–106

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Vyazovkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vyazovkin, S. (2015). Physical Processes. In: Isoconversional Kinetics of Thermally Stimulated Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-14175-6_3

Download citation

Publish with us

Policies and ethics