Skip to main content

Diagnostics: The Future

  • Chapter
Crohn’s Disease

Abstract

Imaging of Crohn’s disease is continuously evolving with new imaging techniques moving beyond anatomical information to provide functional information that can aid in therapeutic decisions and monitoring therapy. Multiple emerging MRI techniques for small bowel imaging aim at differentiating active inflammation from fibrostenotic disease and provide the potential for quantitative imaging of disease assessment and treatment monitoring. Some of these techniques (such as diffusion weighted imaging, motility imaging, and high resolution imaging) are clinically available but need to be further validated in larger studies. Some techniques are less accessible clinically such as dynamic contrast enhancement of the bowel. Other techniques such as magnetization transfer are in the early research phase. New CT techniques are mainly focused on radiation dose reduction and are becoming more available in clinical practice. Dual energy CT may have additional theoretical potentials in assessing bowel perfusion, but remains largely uninvestigated in Crohn’s disease. PET-CT has the potential for assessing degree of inflammation. Future developments may focus on new PET radiopharmaceuticals that can be more specific for inflammation. Contrast-enhanced ultrasound can provide the potential for quantitative assessment of disease activity in selected bowel segments. US elastography of the bowel is in the very early stages of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

ASIR:

Adaptive statistical iterative reconstruction

bSSFP:

Balanced steady state free precession

CD:

Crohn’s disease

CEUS:

Contrast-enhanced ultrasound

CNR:

Contrast to noise ratio

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

DWI:

Diffusion weighted imaging

FBP:

Filtered back projection

FDG-PET:

Flouro-deoxy-glucose positron emission tomography

MI:

Motility index

MT:

Magnetization transfer

SSFSE:

Single shot fast spin echo

SNR:

Signal to noise ratio

References

  1. Sinha R, Rajiah P, Murphy P, Hawker P, Sanders S. Utility of high-resolution MR imaging in demonstrating transmural pathologic changes in Crohn disease. Radiographics. 2009;29(6):1847–67.

    Article  PubMed  Google Scholar 

  2. Sinha R, Murphy P, Sanders S, Ramachandran I, Hawker P, Rawat S, et al. Diagnostic accuracy of high-resolution MR enterography in Crohn’s disease: comparison with surgical and pathological specimen. Clin Radiol. 2013;68(9):917–27.

    Article  CAS  PubMed  Google Scholar 

  3. Chang KJ, Kamel IR, Macura KJ, Bluemke DA. 3.0-T MR imaging of the abdomen: comparison with 1.5 T1. Radiographics. 2008;28(7):1983–98.

    Article  PubMed  Google Scholar 

  4. Barth MM, Smith MP, Pedrosa I, Lenkinski RE, Rofsky NM. Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics. 2007;27(5):1445–62.

    Article  PubMed  Google Scholar 

  5. van Gemert-Horsthuis K, Florie J, Hommes DW, Lavini Mphil C, Reitsma JB, van Deventer SJ, et al. Feasibility of evaluating Crohn’s disease activity at 3.0 Tesla. J Magn Reson Imaging. 2006;24(2):340–8.

    Article  PubMed  Google Scholar 

  6. Dagia C, Ditchfield M, Kean M, Catto-Smith A. Feasibility of 3-T MRI for the evaluation of Crohn disease in children. Pediatr Radiol. 2010;40(10):1615–24.

    Article  PubMed  Google Scholar 

  7. Rimola J, Rodriguez S, García-Bosch O, Ordás I, Ayala E, Aceituno M, et al. Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn’s disease. Gut. 2009;58(8):1113–20.

    Article  CAS  PubMed  Google Scholar 

  8. Adamek HE, Schantzen W, Rinas U, Goyen M, Ajaj W, Esser C. Ultra-high-field magnetic resonance enterography in the diagnosis of ileitis (neo-)terminalis: a prospective study. J Clin Gastroenterol. 2012;46(4):311–6.

    Article  PubMed  Google Scholar 

  9. Fiorino G, Bonifacio C, Padrenostro M, Sposta F, Spinelli A, Malesci A, et al. Comparison between 1.5 and 3.0 Tesla magnetic resonance enterography for the assessment of disease activity and complications in ileo-colonic Crohn’s disease. Dig Dis Sci. 2013;58(11):3246–55.

    Article  PubMed  Google Scholar 

  10. Patak MA, von Weymarn C, Froehlich JM. Small bowel MR imaging: 1.5T versus 3T. Magn Reson Imaging Clin N Am. 2007;15(3):383–93.

    Article  PubMed  Google Scholar 

  11. Gonçalves SI, Ziech MLW, Lamerichs R, Stoker J, Nederveen AJ. Optimization of alternating TR-SSFP for fat-suppression in abdominal images at 3T. Magn Reson Med. 2012;67(3):595–600.

    Article  PubMed  Google Scholar 

  12. Zappa M, Stefanescu C, Cazals-Hatem D, Bretagnol F, Deschamps L, Attar A, et al. Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn’s disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis. 2011;17(4):984–93.

    Article  PubMed  Google Scholar 

  13. Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, et al. MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology. 2006;238(2):517–30.

    Article  PubMed  Google Scholar 

  14. Low RN, Sebrechts CP, Politoske DA, Bennett MT, Flores S, Snyder RJ, et al. Crohn disease with endoscopic correlation: single-shot fast spin-echo and gadolinium-enhanced fat-suppressed spoiled gradient-echo MR imaging. Radiology. 2002;222(3):652–60.

    Article  PubMed  Google Scholar 

  15. Laghi A, Borrelli O, Paolantonio P, Dito L, de Mesquita MB, Falconieri P, et al. Contrast enhanced magnetic resonance imaging of the terminal ileum in children with Crohn’s disease. Gut. 2003;52(3):393–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sempere GAJ, Martinez Sanjuan V, Medina Chulia E, Benages A, Tome Toyosato A, Canelles P, et al. MRI evaluation of inflammatory activity in Crohn’s disease. Am J Roentgenol. 2005;184(6):1829–35.

    Article  Google Scholar 

  17. Pupillo VA, Di Cesare E, Frieri G, Limbucci N, Tanga M, Masciocchi C. Assessment of inflammatory activity in Crohn’s disease by means of dynamic contrast-enhanced MRI. Radiol Med. 2007;112(6):798–809.

    Article  CAS  PubMed  Google Scholar 

  18. Del Vescovo R, Sansoni I, Caviglia R, Ribolsi M, Perrone G, Leoncini E, et al. Dynamic contrast enhanced magnetic resonance imaging of the terminal ileum: differentiation of activity of Crohn’s disease. Abdom Imaging. 2008;33(4):417–24.

    Article  PubMed  Google Scholar 

  19. Knuesel PR, Kubik RA, Crook DW, Eigenmann F, Froehlich JM. Assessment of dynamic contrast enhancement of the small bowel in active Crohn’s disease using 3D MR enterography. Eur J Radiol. 2010;73(3):607–13.

    Article  PubMed  Google Scholar 

  20. Oto A, Fan X, Mustafi D, Jansen SA, Karczmar GS, Rubin DT, et al. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn’s disease: pilot study. Acad Radiol. 2009;16(10):1223–30.

    Article  PubMed  Google Scholar 

  21. Horsthuis K, Bipat S, Stokkers PC, Stoker J. Magnetic resonance imaging for evaluation of disease activity in Crohn’s disease: a systematic review. Eur Radiol. 2009;19(6):1450–60.

    Article  PubMed  Google Scholar 

  22. Giusti S, Faggioni L, Neri E, Fruzzetti E, Nardini L, Marchi S, et al. Dynamic MRI of the small bowel: usefulness of quantitative contrast-enhancement parameters and time-signal intensity curves for differentiating between active and inactive Crohn’s disease. Abdom Imaging. 2010;35(6):646–53.

    Article  PubMed  Google Scholar 

  23. Röttgen R, Grandke T, Grieser C, Lehmkuhl L, Hamm B, Lüdemann L. Measurement of MRI enhancement kinetics for evaluation of inflammatory activity in Crohn’s disease. Clin Imaging. 2010;34(1):29–35.

    Article  PubMed  Google Scholar 

  24. Ziech MLW, Lavini C, Caan MWA, Nio CY, Stokkers PCF, Bipat S, et al. Dynamic contrast-enhanced MRI in patients with luminal Crohn’s disease. Eur J Radiol. 2012;81(11):3019–27.

    Article  CAS  PubMed  Google Scholar 

  25. Oto A, Kayhan A, Williams JTB, Fan X, Yun L, Arkani S, et al. Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging. 2011;33(3):615–24.

    Article  PubMed  Google Scholar 

  26. Oto A, Zhu F, Kulkarni K, Karczmar GS, Turner JR, Rubin D. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn’s disease. Acad Radiol. 2009;16(5):597–603.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kiryu S, Dodanuki K, Takao H, Watanabe M, Inoue Y, Takazoe M, et al. Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn’s disease. J Magn Reson Imaging. 2009;29(4):880–6.

    Article  PubMed  Google Scholar 

  28. Hordonneau C, Buisson A, Scanzi J, Goutorbe F, Pereira B, Borderon C, et al. Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn’s disease: validation of quantitative index of activity. Am J Gastroenterol. 2014;109(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  29. Cakmakci E, Erturk SM, Cakmakci S, Bayram A, Tokgoz S, Caliskan KC, et al. Comparison of the results of computerized tomographic and diffusion-weighted magnetic resonance imaging techniques in inflammatory bowel diseases. Quant Imaging Med Surg. 2013;3(6):327–33.

    PubMed Central  PubMed  Google Scholar 

  30. Ream J, Dillman J, Adler J, Khalatbari S, McHugh J, Strouse P, et al. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol. 2013;43(9):1077–85.

    Article  PubMed  Google Scholar 

  31. Neubauer H, Pabst T, Dick A, Machann W, Evangelista L, Wirth C, et al. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol. 2013;43(1):103–14.

    Article  PubMed  Google Scholar 

  32. Froehlich JM, Waldherr C, Stoupis C, Erturk SM, Patak MA. MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging. Eur Radiol. 2010;20(8):1945–51.

    Article  PubMed  Google Scholar 

  33. Kitazume Y, Satoh S, Hosoi H, Noguchi O, Shibuya H. Cine magnetic resonance imaging evaluation of peristalsis of small bowel with longitudinal ulcer in Crohn disease: preliminary results. J Comput Assist Tomogr. 2007;31(6):876–83.

    Article  PubMed  Google Scholar 

  34. Odille F, Menys A, Ahmed A, Punwani S, Taylor SA, Atkinson D. Quantitative assessment of small bowel motility by nonrigid registration of dynamic MR images. Magn Reson Med. 2012;68(3):783–93.

    Article  PubMed  Google Scholar 

  35. Menys A, Atkinson D, Odille F, Ahmed A, Novelli M, Rodriguez-Justo M, et al. Quantified terminal ileal motility during MR enterography as a potential biomarker of Crohn’s disease activity: a preliminary study. Eur Radiol. 2012;22(11):2494–501.

    Article  PubMed  Google Scholar 

  36. Bickelhaupt S, Froehlich JM, Cattin R, Raible S, Bouquet H, Bill U, et al. Software-assisted small bowel motility analysis using free-breathing MRI: feasibility study. J Magn Reson Imaging. 2014;39(1):17–23.

    Article  PubMed  Google Scholar 

  37. Menys A, Helbren E, Makanyanga J, Emmanuel A, Forbes A, Windsor A, et al. Small bowel strictures in Crohn’s disease: a quantitative investigation of intestinal motility using MR enterography. Neurogastroenterol Motil. 2013;25(12):967–e775.

    Article  CAS  PubMed  Google Scholar 

  38. Cullmann JL, Bickelhaupt S, Froehlich JM, Szucs-Farkas Z, Tutuian R, Patuto N, et al. MR imaging in Crohn’s disease: correlation of MR motility measurement with histopathology in the terminal ileum. Neurogastroenterol Motil. 2013;25(9):749–e577.

    Article  CAS  PubMed  Google Scholar 

  39. Menys A, Plumb A, Atkinson D, Taylor SA. The challenge of segmental small bowel motility quantitation using MR enterography. Br J Radiol. 2014;87(1040):20140330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wakamiya M, Furukawa A, Kanasaki S, Murata K. Assessment of small bowel motility function with cine-MRI using balanced steady-state free precession sequence. J Magn Reson Imaging. 2011;33(5):1235–40.

    Article  PubMed  Google Scholar 

  41. Bickelhaupt S, Froehlich JM, Cattin R, Patuto N, Tutuian R, Wentz KU, et al. Differentiation between active and chronic Crohn’s disease using MRI small-bowel motility examinations—initial experience. Clin Radiol. 2013;68(12):1247–53.

    Article  CAS  PubMed  Google Scholar 

  42. Menys A, Taylor SA, Emmanuel A, Ahmed A, Plumb AA, Odille F, et al. Global small bowel motility: assessment with dynamic MR imaging. Radiology. 2013;269(2):443–50.

    Article  PubMed  Google Scholar 

  43. Farghal A, Kasmai B, Malcolm PN, Graves MJ, Toms AP. Developing a new measure of small bowel peristalsis with dynamic MR: a proof of concept study. Acta Radiol. 2012;53(6):593–600.

    Article  PubMed  Google Scholar 

  44. van der Paardt MP, Sprengers AMJ, Zijta FM, Lamerichs R, Nederveen AJ, Stoker J. Noninvasive automated motion assessment of intestinal motility by continuously tagged MR imaging. J Magn Reson Imaging. 2014;39(1):9–16.

    Article  PubMed  Google Scholar 

  45. Sprengers AMJ, van der Paardt MP, Zijta FM, Caan MWA, Lamerichs RM, Nederveen AJ, et al. Use of continuously MR tagged imaging for automated motion assessment in the abdomen: a feasibility study. J Magn Reson Imaging. 2012;36(2):492–7.

    Article  PubMed  Google Scholar 

  46. Bickelhaupt S, Pazahr S, Chuck N, Blume I, Froehlich JM, Cattin R, et al. Crohn’s disease: small bowel motility impairment correlates with inflammatory-related markers C-reactive protein and calprotectin. Neurogastroenterol Motil. 2013;25(6):467–e363.

    Article  CAS  PubMed  Google Scholar 

  47. Hamy V, Menys A, Helbren E, Odille F, Punwani S, Taylor S, et al. Respiratory motion correction in dynamic-MRI: application to small bowel motility quantification during free breathin. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):132–40.

    PubMed  Google Scholar 

  48. Al-Hawary M, Zimmermann EM. A new look at Crohn’s disease: novel imaging techniques. Curr Opin Gastroenterol. 2012;28(4):334–40.

    PubMed  Google Scholar 

  49. Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PDR, Golembeski CP, Polydorides AD, et al. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011;259(1):127–35.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Pazahr S, Blume I, Frei P, Chuck N, Nanz D, Rogler G, et al. Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn’s disease: initial experience. MAGMA. 2013;26(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  51. Palmer L, Herfarth H, Porter CQ, Fordham LA, Sandler RS, Kappelman MD. Diagnostic ionizing radiation exposure in a population-based sample of children with inflammatory bowel diseases. Am J Gastroenterol. 2009;104(11):2816–23.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Jaffe TA, Gaca AM, Delaney S, Yoshizumi TT, Toncheva G, Nguyen G, et al. Radiation doses from small-bowel follow-through and abdominopelvic MDCT in Crohn’s disease. Am J Roentgenol. 2007;189(5):1015–22.

    Article  Google Scholar 

  53. Desmond AN, O’Regan K, Curran C, McWilliams S, Fitzgerald T, Maher MM, et al. Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008;57(11):1524–9.

    Article  CAS  PubMed  Google Scholar 

  54. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am. 2009;47(1):27–40.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Del Gaizo AJ, Fletcher JG, Yu L, Paden RG, Spencer GC, Leng S, et al. Reducing radiation dose in CT enterography. Radiographics. 2013;33(4):1109–24.

    Article  PubMed  Google Scholar 

  56. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology. 2005;237(3):945–51.

    Article  PubMed  Google Scholar 

  57. Funama Y, Awai K, Nakayama Y, Kakei K, Nagasue N, Shimamura M, et al. Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique: phantom study. Radiology. 2005;237(3):905–10.

    Article  PubMed  Google Scholar 

  58. Kambadakone AR, Chaudhary NA, Desai GS, Nguyen DD, Kulkarni NM, Sahani DV. Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. Am J Roentgenol. 2011;196(6):W743–52.

    Article  Google Scholar 

  59. Kaza RK, Platt JF, Al-Hawary MM, Wasnik A, Liu PS, Pandya A. CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction. Am J Roentgenol. 2012;198(5):1084–92.

    Article  Google Scholar 

  60. Johnson E, Megibow A, Wehrli N, O’Donnell T, Chandarana H. CT enterography at 100 kVp with iterative reconstruction compared to 120 kVp filtered back projection: evaluation of image quality and radiation dose in the same patients. Abdom Imaging. 2014;39:1255–60.

    Article  PubMed  Google Scholar 

  61. O’Neill S, Mc Laughlin P, Crush L, O’Connor O, Mc Williams S, Craig O, et al. A prospective feasibility study of sub-millisievert abdominopelvic CT using iterative reconstruction in Crohn’s disease. Eur Radiol. 2013;23(9):2503–12.

    Article  PubMed  Google Scholar 

  62. Guimarães LS, Fletcher JG, Yu L, Huprich JE, Fidler JL, Manduca A, et al. Feasibility of dose reduction using novel denoising techniques for low kV (80 kV) CT enterography: optimization and validation. Acad Radiol. 2010;17(10):1203–10.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19(1):13–23.

    Article  PubMed  Google Scholar 

  64. Qu M, Ehman E, Fletcher JG, Huprich JE, Hara AK, Silva AC, et al. Toward biphasic computed tomography (CT) enteric contrast: material classification of luminal bismuth and mural iodine in a small-bowel phantom using dual-energy CT. J Comput Assist Tomogr. 2012;36(5):554–9.

    Article  PubMed  Google Scholar 

  65. Mongan J, Rathnayake S, Fu Y, Wang R, Jones EF, Gao D-W, et al. In vivo differentiation of complementary contrast media at dual-energy CT. Radiology. 2012;265(1):267–72.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Mileto A, Marin D, Alfaro-Cordoba M, Ramirez-Giraldo JC, Eusemann CD, Scribano E, et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology. 2014;273(3):813–20.

    Article  PubMed  Google Scholar 

  67. Baxa J, Vondráková A, Matoušková T, Růžičková O, Schmidt B, Flohr T, et al. Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol. 2014;24(8):1981–8.

    Article  PubMed  Google Scholar 

  68. Panes J, Bouhnik Y, Reinisch W, Stoker J, Taylor SA, Baumgart DC, et al. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J Crohns Colitis. 2013;7(7):556–85.

    Article  CAS  PubMed  Google Scholar 

  69. Bicik I, Bauerfeind P, Breitbach T, von Schulthess GK, Fried M. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet. 1997;350(9073):262.

    Article  CAS  PubMed  Google Scholar 

  70. Skehan SJ, Issenman R, Mernagh J, Nahmias C, Jacobson K. 18 F-fluorodeoxyglucose positron tomography in diagnosis of paediatric inflammatory bowel disease. Lancet. 1999;354(9181):836–7.

    Article  CAS  PubMed  Google Scholar 

  71. Neurath MF, Vehling D, Schunk K, Holtmann M, Brockmann H, Helisch A, et al. Noninvasive assessment of Crohn’s disease activity: a comparison of 18 F-fluorodeoxyglucose positron emission tomography, hydromagnetic resonance imaging, and granulocyte scintigraphy with labeled antibodies. Am J Gastroenterol. 2002;97(8):1978–85.

    Article  CAS  PubMed  Google Scholar 

  72. Lemberg DA, Issenman RM, Cawdron R, Green T, Mernagh J, Skehan SJ, et al. Positron emission tomography in the investigation of pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2005;11(8):733–8.

    Article  PubMed  Google Scholar 

  73. Louis E, Ancion G, Colard A, Spote V, Belaiche J, Hustinx R. Noninvasive assessment of Crohn’s disease intestinal lesions with 18 F-FDG PET/CT. J Nucl Med. 2007;48(7):1053–9.

    Article  PubMed  Google Scholar 

  74. Däbritz J, Jasper N, Loeffler M, Weckesser M, Foell D. Noninvasive assessment of pediatric inflammatory bowel disease with 18 F-fluorodeoxyglucose-positron emission tomography and computed tomography. Eur J Gastroenterol Hepatol. 2011;23(1):81–9. doi:10.1097/MEG.0b013e3283410222.

    Article  PubMed  Google Scholar 

  75. Holtmann M, Uenzen M, Helisch A, Dahmen A, Mudter J, Goetz M, et al. 18 F-fluorodeoxyglucose positron-emission tomography (PET) can be used to assess inflammation non-invasively in Crohn’s disease. Dig Dis Sci. 2012;57(10):2658–68.

    Article  PubMed  Google Scholar 

  76. Treglia G, Quartuccio N, Sadeghi R, Farchione A, Caldarella C, Bertagna F, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with chronic inflammatory bowel disease: a systematic review and a meta-analysis. J Crohns Colitis. 2013;7(5):345–54.

    Article  PubMed  Google Scholar 

  77. Groshar D, Bernstine H, Stern D, Sosna J, Eligalashvili M, Gurbuz EG, et al. PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18 F-FDG uptake. J Nucl Med. 2010;51(7):1009–14.

    Article  PubMed  Google Scholar 

  78. Ahmadi A, Li Q, Muller K, Collins D, Valentine JF, Drane W, et al. Diagnostic value of noninvasive combined fluorine‐18 labeled fluoro‐2‐deoxy‐d‐glucose positron emission tomography and computed tomography enterography in active Crohn’s disease. Inflamm Bowel Dis. 2010;16(6):974–81. doi:10.1002/ibd.21153.

    Article  PubMed  Google Scholar 

  79. Jacene HA, Ginsburg P, Kwon J, Nguyen GC, Montgomery EA, Bayless TM, et al. Prediction of the need for surgical intervention in obstructive Crohn’s disease by 18 F-FDG PET/CT. J Nucl Med. 2009;50(11):1751–9.

    Article  CAS  PubMed  Google Scholar 

  80. Lenze F, Wessling J, Bremer J, Ullerich H, Spieker T, Weckesser M, et al. Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18 F‐FDG‐PET/CT, MR‐enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012;18(12):2252–60. doi:10.1002/ibd.22930.

    Article  PubMed  Google Scholar 

  81. Lapp R, Spier B, Perlman S, Jaskowiak C, Reichelderfer M. Clinical utility of positron emission tomography/computed tomography in inflammatory bowel disease. Mol Imaging Biol. 2011;13(3):573–6.

    Article  PubMed  Google Scholar 

  82. Spier B, Perlman S, Jaskowiak C, Reichelderfer M. PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol. 2010;12(1):85–8.

    Article  PubMed  Google Scholar 

  83. Serra C, Menozzi G, Labate AMM, Giangregorio F, Gionchetti P, Beltrami M, et al. Ultrasound assessment of vascularization of the thickened terminal ileum wall in Crohn’s disease patients using a low-mechanical index real-time scanning technique with a second generation ultrasound contrast agent. Eur J Radiol. 2007;62(1):114–21.

    Article  PubMed  Google Scholar 

  84. Migaleddu V, Scanu AM, Quaia E, Rocca PC, Dore MP, Scanu D, et al. Contrast-enhanced ultrasonographic evaluation of inflammatory activity in Crohn’s disease. Gastroenterology. 2009;137(1):43–52.

    Article  PubMed  Google Scholar 

  85. Ripollés T, Martínez MJ, Paredes JM, Blanc E, Flors L, Delgado F. Crohn disease: correlation of findings at contrast-enhanced US with severity at endoscopy. Radiology. 2009;253(1):241–8.

    Article  PubMed  Google Scholar 

  86. Romanini L, Passamonti M, Navarria M, Lanzarotto F, Villanacci V, Grazioli L, et al. Quantitative analysis of contrast-enhanced ultrasonography of the bowel wall can predict disease activity in inflammatory bowel disease. Eur J Radiol. 2014;83(8):1317–23.

    Article  PubMed  Google Scholar 

  87. De Franco A, Di Veronica A, Armuzzi A, Roberto I, Marzo M, De Pascalis B, et al. Ileal Crohn disease: mural microvascularity quantified with contrast-enhanced US correlates with disease activity. Radiology. 2012;262(2):680–8.

    Article  PubMed  Google Scholar 

  88. Ripollés T, Rausell N, Paredes JM, Grau E, Martínez MJ, Vizuete J. Effectiveness of contrast-enhanced ultrasound for characterisation of intestinal inflammation in Crohn’s disease: a comparison with surgical histopathology analysis. J Crohns Colitis. 2013;7(2):120–8.

    Article  PubMed  Google Scholar 

  89. Quaia E, De Paoli L, Stocca T, Cabibbo B, Casagrande F, Cova MA. The value of small bowel wall contrast enhancement after sulfur hexafluoride-filled microbubble injection to differentiate inflammatory from fibrotic strictures in patients with Crohn’s disease. Ultrasound Med Biol. 2012;38(8):1324–32.

    Article  PubMed  Google Scholar 

  90. Nylund K, Jirik R, Mezl M, Leh S, Hausken T, Pfeffer F, et al. Quantitative contrast-enhanced ultrasound comparison between inflammatory and fibrotic lesions in patients with Crohn’s disease. Ultrasound Med Biol. 2013;39(7):1197–206.

    Article  PubMed  Google Scholar 

  91. Quaia E, Migaleddu V, Baratella E, Pizzolato R, Rossi A, Grotto M, et al. The diagnostic value of small bowel wall vascularity after sulfur hexafluoride-filled microbubble injection in patients with Crohn’s disease. Correlation with the therapeutic effectiveness of specific anti-inflammatory treatment. Eur J Radiol. 2009;69(3):438–44.

    Article  PubMed  Google Scholar 

  92. Quaia E, Cabibbo B, De Paoli L, Toscano W, Poillucci G, Cova M. The value of time-intensity curves obtained after microbubble contrast agent injection to discriminate responders from non-responders to anti-inflammatory medication among patients with Crohn’s disease. Eur Radiol. 2013;23(6):1650–9.

    Article  PubMed  Google Scholar 

  93. Paredes JM, Ripollés T, Cortés X, Moreno N, Martínez MJ, Bustamante-Balén M, et al. Contrast-enhanced ultrasonography: usefulness in the assessment of postoperative recurrence of Crohn’s disease. J Crohns Colitis. 2013;7(3):192–201.

    Article  PubMed  Google Scholar 

  94. Dillman JR, Stidham RW, Higgins PDR, Moons DS, Johnson LA, Rubin JM. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology. 2013;267(3):757–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Oto MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yacoub, J.H., Oto, A. (2015). Diagnostics: The Future. In: Fichera, A., Krane, M. (eds) Crohn’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-14181-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14181-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14180-0

  • Online ISBN: 978-3-319-14181-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics