Skip to main content

Distributional Models for Lexical Semantics: An Investigation of Different Representations for Natural Language Learning

  • Chapter
  • First Online:
Harmonization and Development of Resources and Tools for Italian Natural Language Processing within the PARLI Project

Part of the book series: Studies in Computational Intelligence ((SCI,volume 589))

  • 416 Accesses

Abstract

Language learning systems usually generalize linguistic observations into rules and patterns that are statistical models of higher level semantic inferences. When the availability of training data is scarce, lexical information can be limited by data sparseness effects and generalization is thus needed. Distributional models represent lexical semantic information in terms of the basic co-occurrences between words in large-scale text collections. As recent works already address, the definition of proper distributional models as well as methods able to express the meaning of phrases or sentences as operations on lexical representations is a complex problem, and a still largely open issue. In this paper, a perspective centered on Convolution Kernels is discussed and the formulation of a Partial Tree Kernel that integrates syntactic information and lexical generalization is studied. Moreover a large scale investigation of different representation spaces, each capturing a different linguistic relation, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that SVD emphasizes directions with maximal covariance for \(M\), i.e. term clusters for which it is maximal the difference between contexts, i.e. short syntagmatic patterns.

  2. 2.

    When \(n_1\) and \(n_2\) are not lexical nodes \(\sigma \) will be 0 when \(n_1 \ne n_2\).

  3. 3.

    http://cogcomp.cs.illinois.edu/Data/QA/QC/.

  4. 4.

    http://disi.unitn.it/moschitti/Tree-Kernel.htm.

References

  1. Harris, Z.: Distributional structure. In: Katz, J.J., Fodor, J.A. (eds.) The Philosophy of Linguistics. Oxford University Press, Oxford (1964)

    Google Scholar 

  2. Sahlgren, M.: The word-space model. PhD thesis, Stockholm University (2006)

    Google Scholar 

  3. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Schutze, H.: Automatic word sense discrimination. J. Comput. Linguist. 24, 97–123 (1998)

    Google Scholar 

  5. Lin, D.: Automatic retrieval and clustering of similar word. In: Proceedings of COLING-ACL, Montreal, Canada (1998)

    Google Scholar 

  6. Giuliano, C.: Fine-grained classification of named entities exploiting latent semantic kernels. In: Proceedings of CoNLL 2009, CoNLL’09, Stroudsburg, PA, USA, pp. 201–209 (2009)

    Google Scholar 

  7. Croce, D., Giannone, C., Annesi, P., Basili, R.: Towards open-domain semantic role labeling. In: ACL, pp. 237–246 (2010)

    Google Scholar 

  8. Pado, S., Lapata, M.: Dependency-based construction of semantic space models. Comput. Linguist. 33(2) (2007)

    Google Scholar 

  9. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cogn. Sci. 34, 1388–1429 (2010)

    Article  Google Scholar 

  10. Baroni, M., Lenci, A.: One distributional memory, many semantic spaces. In: Proceedings of the GEMS 2009 Workshop, GEMS’09, Stroudsburg, PA, USA, pp. 1–8 (2009)

    Google Scholar 

  11. Clark, S., Pulman, S.: Combining symbolic and distributional models of meaning. In: Proceedings of the AAAI Spring Symposium on Quantum Interaction, pp. 52–55 (2007)

    Google Scholar 

  12. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compositional distributional model of meaning. In: Proceedings of EMNLP 2011, Edinburgh, Scotland, UK

    Google Scholar 

  13. Haussler, D.: Convolution kernels on discrete structures. University of Santa Cruz, Technical report (1999)

    Google Scholar 

  14. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: kernels over discrete structures, and the voted perceptron. In: Proceedings of ACL’02 (2002)

    Google Scholar 

  15. Bloehdorn, S., Moschitti, A.: Combined syntactic and semantic kernels for text classification. In: Proceedings of ECIR 2007, Rome, Italy (2007)

    Google Scholar 

  16. Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution kernels on dependency trees. In: Proceedings of EMNLP 2011

    Google Scholar 

  17. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::similarity—measuring the relatedness of concept. In: Proceedings of 5th NAACL, Boston, MA (2004)

    Google Scholar 

  18. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Commun. ACM 18 (1975)

    Google Scholar 

  19. Landauer, T., Dumais, S.: A solution to plato’s problem: the latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychol. Rev. 104 (1997)

    Google Scholar 

  20. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: *SEM 2013 shared task: semantic textual similarity, including a pilot on typed-similarity. In: *SEM 2013 (2013)

    Google Scholar 

  21. Schütze, H., Pedersen, J.O.: Information retrieval based on word senses. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval (1995)

    Google Scholar 

  22. Aston, G., Burnard, L.: The BNC Handbook: Exploring the British National Corpus with SARA. Edinburgh University Press, Scotland (1998)

    Google Scholar 

  23. Graff, D.: English Gigaword. Technical report, Linguistic Data Consortium, Philadelphia (2003)

    Google Scholar 

  24. Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E.: The WaCky wide web: a collection of very large linguistically processed web-crawled corpora. LRE 43(3), 209–226 (2009)

    Google Scholar 

  25. Schütze, H.: Word space. In: Advances in Neural Information Processing Systems 5, Morgan Kaufmann, pp. 895–902 (1993)

    Google Scholar 

  26. Basili, R., Pennacchiotti, M.: Distributional lexical semantics: toward uniform representation paradigms for advanced acquisition and processing tasks. Nat. Lang. Eng. 16(4), 347–358 (2010)

    Article  Google Scholar 

  27. Lin, D.: Automatic retrieval and clustering of similar words. In: COLING-ACL, pp. 768–774 (1998)

    Google Scholar 

  28. Fano, R.M., Hawkins, D.: Transmission of information: a statistical theory of communications. Am. J. Phys. 29(11), 793–794 (1961)

    Article  Google Scholar 

  29. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of dimensionality for local kernel machines. Technical report, Departement d’Informatique et Recherche Operationnelle (2005)

    Google Scholar 

  30. Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  31. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math.: Ser. B, Numer. Anal.

    Google Scholar 

  32. Johansson, R., Nugues, P.: Dependency-based syntactic-semantic analysis with PropBank and NomBank. In: Proceedings of CoNLL, pp. 183–187 (2008)

    Google Scholar 

  33. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  34. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proceedings of Neural Information Processing Systems (NIPS), pp. 625–632 (2001)

    Google Scholar 

  35. Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: ECML, Machine Learning: ECML, Berlin, Germany, pp. 318–329 (2006)

    Google Scholar 

  36. Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: Ontonotes: the 90% solution. In: Proceedings of NAACL, Stroudsburg, PA, USA, pp. 57–60 (2006)

    Google Scholar 

  37. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. In: Brodley, C., Danyluk, A. (eds.) Proceedings of ICML-01 18th International Conference on Machine Learning, Williams College, US, Morgan Kaufmann Publishers, San Francisco, USA, pp. 66–73 (2001)

    Google Scholar 

  38. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of ACL’02 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Croce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Croce, D., Filice, S., Basili, R. (2015). Distributional Models for Lexical Semantics: An Investigation of Different Representations for Natural Language Learning. In: Basili, R., Bosco, C., Delmonte, R., Moschitti, A., Simi, M. (eds) Harmonization and Development of Resources and Tools for Italian Natural Language Processing within the PARLI Project. Studies in Computational Intelligence, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-319-14206-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14206-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14205-0

  • Online ISBN: 978-3-319-14206-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics