Skip to main content

Global Trends and Possible Future Land Use

  • Chapter
  • First Online:
The Future Use of Nordic Forests

Abstract

This chapter explores the future global need for land by investigating four trends that drive global land use change: future energy demand; future food demand; future demand for various forest products; and climate change. These trends affect land use competition, food prices, and deforestation rates, and they interact with each other in complex ways that are difficult to foresee. In this chapter, a number of trends, their interactions, and possible implications are discussed on the basis of available scenarios and estimates. The chapter ends with a discussion of how global land use changes might influence the conditions for future Nordic forest management and forest sector transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandratos, N. (2009). World food and agriculture to 2030/2050: Highlights and views from mid-2009. In Proceedings, FAO expert meeting, how to feed the world in 2050. Rome: FAO.

    Google Scholar 

  • Anderson, K., & Bows, A. (2010). Beyond “dangerous” climate change: Emission scenarios for a new world. Philosophical Transactions of the Royal Society, A2011(369), 20–44.

    Google Scholar 

  • Bruinsma, J. (2009). The resource outlook to 2050. By how much do land, water and yields need to increase by 2050? Paper presented at FAO expert meeting, 24–26 June 2009, How to feed the world in 2050, FAO, Rome, Italy.

    Google Scholar 

  • Buongiorno, J., et al. (2003). The global forest products model: Structure, estimation, and applications. San Diego/Burlington: Academic.

    Google Scholar 

  • DeFries, R., Rudel, T., Uriarte, M., & Hansen, M. (2010). Deforestation driven by urban population growth and agriculture trade in the twenty-first century. Nature Geoscience, 3(3), 178–181.

    Article  CAS  Google Scholar 

  • Ecofys and WWF. (2010). The energy report. 100% renewable energy by 2050. Gland: Ecofys and WWF International.

    Google Scholar 

  • FAO. (2006). Global forest resource assessment 2005 (FAO forestry paper 147). Rome: FAO.

    Google Scholar 

  • FAO. (2009). How to feed the world in 2050. Rome: FAO.

    Google Scholar 

  • FAO. (2010). Global forest resource assessment 2010 (FAO forestry paper 163). Rome: FAO.

    Google Scholar 

  • FAO and JRC. (2011). Global forest land-use change from 1990 to 2005. Initial results from a global remote sensing survey. Rome: FAO.

    Google Scholar 

  • Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., van der Velde, M., Böttcher, H., Havlik, P., & Achard, F. (2011). Highlighting continued uncertainty in global land cover maps for the user community. Environmental Research Letters, 6(4), 044005.

    Article  Google Scholar 

  • Global Energy Assessment. (2012). Cambridge: Cambridge University Press.

    Google Scholar 

  • Greenpeace. (2010). Energy revolution. A sustainable world energy outlook. Amsterdam: Greenpeace International.

    Google Scholar 

  • Hagler, R. (1998). The global timber supply/demand balance to 2030: Have the equations changed? A multi-client study by Wood Resources International, Reston.

    Google Scholar 

  • Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Early edition of Proceedings of National Academy of Sciences, USA. www.pnas.org/cgi/doi/10.1073/pnas.0912668107

  • Havlik, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., Aoki, K., De Cara, S., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T., & Obersteiner, M. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39, 5690–5702.

    Article  Google Scholar 

  • Hertel, T. W., Tyner, W. E., & Birur, D. K. (2010). Global impacts of biofuels. Energy Journal, 31(1), 75–100.

    Article  Google Scholar 

  • IAASTD. (2008). Synthesis report of the International Assessment of Agriculture Knowledge, Science and Technology for Development.

    Google Scholar 

  • IEA. (2011). World energy outlook 2011. Paris: International Energy Agency.

    Book  Google Scholar 

  • IFAD. (2010). Global poverty report 2010. Rome: International Fund for Agricultural Development.

    Google Scholar 

  • IPCC. (2007). Climate change 2007: Synthesis report. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2011). The IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation. Geneva: IPCC.

    Google Scholar 

  • Kallio, M. A. I., Miseyev, A., & Sohlberg, B. (2003). The global forest sector model EFI-GTM. Internal report 15. Joensuu: European Forest Institute.

    Google Scholar 

  • Kraxner, F. (2011, September 14). Global shifts of land use: Natural resources and the future. Presentation at future agriculture, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Kraxner, F., Nordström, E.-M., Havlík, P., Gusti, M., Mosnier, A., Frank, S., et al. (2013). Global bioenergy scenarios – Future forest development, land-use implications and trade-offs. Biomass and Bioenergy, 57, 86–96.

    Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472.

    Article  CAS  Google Scholar 

  • Langeveld, J. W. A., Dixon, J., & Jaworski, J. F. (2010). Development perspectives of the biobased economy: A review. Crop Science, 50(Supp. 1), S-142–S-151.

    Google Scholar 

  • Mann, M. E. (2009). Defining dangerous anthropogenic interference. Proceedings of the National Academy of Sciences, 106, 4065–4066.

    Article  CAS  Google Scholar 

  • Nelson, G. C., et al. (2010). Food security, farming, and climate change to 2050. Scenarios, results, policy options. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Nilsson, S. (2011, October 4–7). Contributions of the forest sector to economic development and transition towards a green economy. Presentation at the international conference contribution of forests to a green economy, German Government, Bonn, Germany.

    Google Scholar 

  • Nilsson, S. (2012). Availability of cultivated land to meet the expected demand in food, fiber, and fuel. In: Royal Swedish Academy of Agriculture and Forestry, The global need for food, fibre and fuel: Land use perspectives on constraints and opportunities in meeting future demand. Tidskrift, 151 (4), The Swedish Academy of Agriculture and Forestry.

    Google Scholar 

  • Nilsson, S., & Fischer, G. (2007). The three Fs: Food, fiber, and fuel. Presentation at IIASA 35 year anniversary conference on global development: Science and policies for the future, IIASA, Laxenburg, Austria.

    Google Scholar 

  • Northway, S., & Bull, G. (2007). Review of the capabilities of the international forest and forest products trade model. Vancouver: University of British Columbia.

    Google Scholar 

  • Northway, S., & Bull, G. (2011, February 24). Global trends in the forest sector: Land use, products and trade. Presentation at the ABCPF forestry conference “Wood is Good,” University of British Columbia, Vancouver, Canada.

    Google Scholar 

  • Obersteiner, M. (2011, Summer). Green food systems for the 9 billion. Options, IIASA, Laxenburg, Austria.

    Google Scholar 

  • OECD and FAO. (2011). OECD-FAO agricultural outlook 2011–2020. Paris: OECD.

    Book  Google Scholar 

  • OFID. (2009). Biofuels and food security. Study prepared by IIASA. Vienna: OFID.

    Google Scholar 

  • Rennel, J. (2010). Long-term value creation and value destruction. Successful and failed investments in the forest industry. Stockholm: Spearhead Production. [in Swedish]

    Google Scholar 

  • Riahi, K., et al. (2012). Energy pathways for sustainable development (chapter 17). In Global energy assessment. Laxenburg: IIASA.

    Google Scholar 

  • Roberts, D. (2010, September 30–October 1). The global competition for land: The 4 Fs (Food, Feed, Fiber, and Fuel). Presentation at 1st Latin America forest industry conference, held Sao Paulo, Brazil, Cambridge Forest Products Associates, MA, USA.

    Google Scholar 

  • Sedjo, R. A., & Lyon, K. S. (1996). Timber supply model 96: A global timber supply model with a pulpwood component (Discussion paper 96–15). Washington, DC: Resources for the Future.

    Google Scholar 

  • Shell. (2008). Energy. In Shell energy scenarios to 2050. The Hague: Shell International.

    Google Scholar 

  • Shell. (2011). Signals & signposts. In Shell energy scenarios to 2050. The Hague: Shell International.

    Google Scholar 

  • Smith, J. B., et al. (2009). Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “Reasons for concern”. Proceedings of the National Academy of Sciences, 106, 4133–4137.

    Article  CAS  Google Scholar 

  • Sohngen, B., Mendelsohn, R., & Sedjo, R. (2001). A global model of climate impacts on timber markets. Journal of Agriculture Resource Economics, 26, 326–343.

    Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. E. (2011, December 13). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264.

    Google Scholar 

  • UCS. (2011). The root of the problem: What’s driving tropical deforestation today? Cambridge, MA: Union of Concerned Scientists.

    Google Scholar 

  • UK Government Office for Science. (2011). Foresight. The future of food and farming. London: The Government Office for Science.

    Google Scholar 

  • UNEP. (2011a). Towards a green economy. Pathways to sustainable development and poverty eradication. Nairobi: UNEP.

    Google Scholar 

  • UNEP. (2011b). Forests in a green economy. A synthesis. Nairobi: UNEP.

    Google Scholar 

  • UNFCCC. (2007). Investment and financial flows to address climate change. Bonn, Germany: http://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/pub_07_financial_flows.pdf

  • UNFCCC. (2009). Copenhagen Accord. FCCC/CP/2009/L.7. Copenhagen: United Nations Climate Change Conference.

    Google Scholar 

  • Van der Werff, G. R., et al. (2009). CO2 emissions from forest loss. Nature Geoscience, 2(11), 737–738.

    Article  Google Scholar 

  • WBGU. (2010). Future bioenergy and sustainable land use (Flagship Report). London: The German Advisory Council on Global Change (WBGU)/Earthscan.

    Google Scholar 

  • White, T., et al. (Eds.). (2011). Greenhouse gas inventories. Dealing with uncertainty. Dordrecht: Springer.

    Google Scholar 

  • Whiteman, A. (2010, April 28–29). The context for forest & energy: Setting the scene. The global potential for energy production from forests. Paper presented at ICF national conference 2010: “Forests and Energy—Maximizing the Potential,” Newcastle, UK.

    Google Scholar 

  • Willenbockel, D. (2011). Exploring food price scenarios towards 2030 with a global multi-region model. Oxfam Research Report.

    Google Scholar 

  • Wintzell, J. (2011, September 27). Global demand for wood and fibre in the next 20 years. Presentation at the seminar “The global need for food, fibre and fuel: Is there enough land to satisfy the demands?”, The Royal Swedish Academy of Agriculture and Forestry, Stockholm, Sweden.

    Google Scholar 

  • WWF. (2011). Living Forest Report. Gland: World Wide Fund for Nature (WWF).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sten Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nilsson, S. (2015). Global Trends and Possible Future Land Use. In: Westholm, E., Beland Lindahl, K., Kraxner, F. (eds) The Future Use of Nordic Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-14218-0_4

Download citation

Publish with us

Policies and ethics