Skip to main content

Electrospun Fluorescent Nanofibers and Their Application in Optical Sensing

  • Chapter
Electrospinning for High Performance Sensors

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Electrospun light-emitting nanofibers are attracting an increasing interest for their potential exploitation in photonic applications, as miniaturized light sources, detectors, waveguides and optical sensors. Fluorescent electrospun fibers can be realized by embedding emissive systems (quantum dots, dyes and bio-chromophores) in optically inert polymer matrices, and by using light-emitting conjugated polymers. The peculiar properties of the electrospinning process allows for obtaining fluorescent fibers featuring typically improved optical properties compared to flat thin films, such as enhanced photoluminescence quantum yield and radiative rates, polarized emission and self-waveguiding of the emitted light. These properties, combined with a high surface area to volume ratio, make these nanostructured materials suitable for high performance optical sensing. This Chapter provides an introductory overview of the properties of fluorescent electrospun nanofibers and presents illustrative examples of their application as optical sensors for the detection of heavy metal ions, explosive compounds and bio-molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Persano, A. Camposeo, C. Tekmen, D. Pisignano. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol. Mater. Eng. 298, 504–520 (2013)

    Article  Google Scholar 

  2. X. Wang, C. Drew, S.-H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2, 1273–1275 (2002)

    Article  Google Scholar 

  3. A. Camposeo, L. Persano, D. Pisignano, Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol. Mater. Eng. 298, 487–503 (2013)

    Article  Google Scholar 

  4. H. Liu, J.B. Edel, L.M. Bellan, H.G. Craighead, Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2, 495–499 (2006)

    Article  Google Scholar 

  5. X. Lu, C. Wang, Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5, 2349–2370 (2009)

    Article  Google Scholar 

  6. S. Wei, J. Sampathi, Z. Guo, N. Anumandla, D. Rutman, A. Kucknoor, L. James, A. Wang, Nanoporous poly(methyl methacrylate)-quantum dots nanocomposite fibers toward biomedical applications. Polymer 52, 5817–5829 (2011)

    Article  Google Scholar 

  7. Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics. 7, 13–23 (2013)

    Article  Google Scholar 

  8. T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, H. Weller, CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 (1994)

    Article  Google Scholar 

  9. F. Di Benedetto, A. Camposeo, L. Persano, A.M. Laera, E. Piscopiello, R. Cingolani, L. Tapfer, D. Pisignano, Light-emitting nanocomposite CdS-polymer electrospun fibres via in situ nanoparticle generation. Nanoscale 3, 4234–4239 (2011)

    Article  Google Scholar 

  10. X. Lu, Y. Zhao, C. Wang, Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater. 17, 2485–2488 (2005)

    Article  Google Scholar 

  11. L. Persano, A. Camposeo, F. Di Benedetto, R. Stabile, A.M. Laera, E. Piscopiello, L. Tapfer, D. Pisignano, CdS-polymer nanocomposites and light-emitting fibers by in situ electron-beam synthesis and lithography. Adv. Mater. 24, 5320–5326 (2012)

    Article  Google Scholar 

  12. L. Persano, S. Molle, S. Girardo, A.A.R. Neves, A. Camposeo, R. Stabile, R. Cingolani, D. Pisignano, Soft nanopatterning on light-emitting inorganic–organic composites. Adv. Funct. Mater. 18, 2692–2698 (2008)

    Article  Google Scholar 

  13. A. Camposeo, M. Polo, A.A.R. Neves, D. Fragouli, L. Persano, S. Molle, A.M. Laera, E. Piscopiello, V. Resta, A. Athanassiou, R. Cingolani, L. Tapfer, D. Pisignano, Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. J. Mater. Chem. 22, 9787–9793 (2012)

    Article  Google Scholar 

  14. (a) A. Camposeo, F. Di Benedetto, R. Stabile, R. Cingolani, D. Pisignano, Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett. 90, 143115 (2007); (b) Y. Ner, J.G. Grote, J.A. Stuart, G.A. Sotzing, Enhanced fluorescence in electrospun dye-doped DNA nanofibers. Soft Matter 4, 1448–1453 (2008)

    Google Scholar 

  15. S. Pagliara, A. Camposeo, S. Polini, R. Cingolani, D. Pisignano, Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab Chip 9, 2851–2856 (2009)

    Article  Google Scholar 

  16. A. Camposeo, F. Di Benedetto, R. Stabile, A.A.R. Neves, R. Cingolani, D. Pisignano, Laser emission from electrospun polymer nanofibers. Small 5, 562–566 (2009)

    Article  Google Scholar 

  17. A.J. Das, C. Lafargue, M. Lebental, J. Zyss, K.S. Narayan, Three-dimensional microlasers based on polymer fibers fabricated by electrospinning. Appl. Phys. Lett. 99, 263303 (2011)

    Article  Google Scholar 

  18. I. Cucchi, F. Spano, U. Giovanella, M. Catellani, A. Varesano, G. Calzaferri, C. Botta, Fluorescent electrospun nanofibers embedding dye-loaded zeolite crystals. Small 3, 305–309 (2007)

    Article  Google Scholar 

  19. J.S. Sparks, R.C. Schelly, W.L. Smith, M.P. Davis, D. Tchernov, V.A. Pieribone, D.F. Gruber, The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 9, e83259 (2014)

    Article  Google Scholar 

  20. R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    Article  Google Scholar 

  21. R. Bizzarri, M. Serresi, S. Luin, F. Beltram, Green fluorescent protein based pH indicators for in vivo use: a review. Anal. Bioanal. Chem. 393, 1107–1122 (2009)

    Article  Google Scholar 

  22. A.L. Yarin, E. Zussman, J.H. Wendorff, A. Greiner, Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. J. Mater. Chem. 17, 2585–2599 (2012)

    Article  Google Scholar 

  23. Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A.L. Yarin, R. Dersch, A. Greiner, J.H. Wendorff, One-step production of polymeric microtubes by co-electrospinning. Small 3, 1064–1073 (2007)

    Article  Google Scholar 

  24. M.D. McGehee, A.J. Hegeer, Semiconducting (Conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655–1668 (2000)

    Article  Google Scholar 

  25. C.-C. Kuo, C.-H. Lin, W.-C. Chen, Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly(fluorene) derivative/PMMA blends. Macromolecules 40, 6959–6966 (2007)

    Article  Google Scholar 

  26. (a) F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, D. Pisignano, Patterning of light-emitting conjugated polymer nanofibres. Nat. Nanotechnol. 3, 614–619 (2008); (b) W. Zhong, F. Li, L. Chen, Y. Chen, Y. Wei, A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. J. Mater. Chem. 22, 5523–5530 (2012)

    Google Scholar 

  27. A. Camposeo, I. Greenfeld, F. Tantussi, S. Pagliara, M. Moffa, F. Fuso, M. Allegrini, E. Zussman, D. Pisignano, Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Lett. 13, 5056–5062 (2013)

    Article  Google Scholar 

  28. V. Fasano, A. Polini, G. Morello, M. Moffa, A. Camposeo, D. Pisignano, Bright light emission and waveguiding in conjugated polymer nanofibers electrospun from organic salt added solutions. Macromolecules 46, 5935–5942 (2013)

    Article  Google Scholar 

  29. D. Li, A. Babel, S.A. Jenekhe, Y. Xia, Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv. Mater. 16, 2062–2066 (2004)

    Article  Google Scholar 

  30. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  31. D. Li, G. Ouyang, J.T. McCann, Y. Xia, Collecting electrospun nanofibers with patterned electrodes. Nano Lett. 5, 913–916 (2005)

    Article  Google Scholar 

  32. D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6, 839–842 (2006)

    Article  Google Scholar 

  33. (a) G.S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, M.J. Madou, Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett. 11, 1831–1837 (2011); (b) H. Wang, G. Zheng, W. Li, X. Wang, D. Sun, Direct-writing organic three-dimensional nanofibrous structure. Appl. Phys. A 102, 457–461 (2011)

    Google Scholar 

  34. C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93, 123111 (2008)

    Article  Google Scholar 

  35. (a) C. Chang, Van H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010); (b) F.-L. Zhou, P.L. Hubbard, S.J. Eichhorn, G.J.M. Parker, Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres. Polymer 52, 3603–3610 (2011); (c) Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sens. Actuatators B-Chem. 132, 67–73 (2008); (d) M. Rinaldo, F. Ruggieri, L. Lozzi, S. Santucci, Well-aligned TiO2 nanofibers grown by near-field-electrospinning. J. Vac. Sci. Technol. B 27, 1829–1833 (2009)

    Google Scholar 

  36. D. Di Camillo, V. Fasano, F. Ruggieri, S. Santucci, L. Lozzi, A. Camposeo, D. Pisignano, Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale 5, 11637–11642 (2013)

    Article  Google Scholar 

  37. J.C. Bolinger, M.C. Traub, J. Brazard, T. Adachi, P.F. Barbara, D.A. Vanden Bout, Conformation and energy transfer in single conjugated polymers. Acc. Chem. Res. 45, 1992–2001 (2012)

    Article  Google Scholar 

  38. (a) T.-Q. Nguyen, V. Doan, B.J. Schwartz, Conjugated polymer aggregates in solution: control of interchain interactions. J. Chem. Phys. 110:4068–4078 (1999); (b) T.-Q. Nguyen, I.B. Martini, J. Liu, B.J. Schwartz, Controlling interchain interactions in conjugated polymers: the effects of chain morphologyon exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104:237–255 (2000)

    Google Scholar 

  39. M. Richard-Lacroix, C. Pellerin, Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46, 9473–9493 (2013)

    Article  Google Scholar 

  40. G. Morello, A. Polini, S. Girardo, A. Camposeo, D. Pisignano, Enhanced emission efficiency in electrospun polyfluorene copolymer fibers. Appl. Phys. Lett. 102, 211911 (2013)

    Article  Google Scholar 

  41. S. Pagliara, A. Camposeo, R. Cingolani, D. Pisignano, Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies. Appl. Phys. Lett. 95, 263301 (2009)

    Article  Google Scholar 

  42. M. Campoy-Quiles, Y. Ishii, H. Sakai, H. Murata, Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers. Appl. Phys. Lett. 92, 213305 (2008)

    Article  Google Scholar 

  43. Y. Ishii, H. Murata, True photoluminescence spectra revealed in electrospun light-emitting single nanofibers. J. Mater. Chem. 22, 4695–4703 (2012)

    Article  Google Scholar 

  44. N.C. Greenham, I.D.W. Samuel, G.R. Hayes, R.T. Phillips, Y.A.R.R. Kessener, S.C. Moratti, A.B. Holmes, R.H. Friend, Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 241, 89–96 (1995)

    Article  Google Scholar 

  45. I. Hwang, G.D. Scholes, Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23, 610–620 (2011)

    Article  Google Scholar 

  46. D. Pisignano, Polymer Nanofibers (Royal Society of Chemistry, Cambridge, 2013), pp. 50–119

    Google Scholar 

  47. T.-Q. Nguyen, J. Wu, V. Doan, B.J. Schwartz, S.H. Tolbert, Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652–656 (2000)

    Article  Google Scholar 

  48. A.C.-A. Chen, J.U. Wallace, S.K.-H. Wei, L. Zeng, S.H. Chen, T.N. Blanton, Light-emitting organic materials with variable charge injection and transport properties. Chem. Mater. 18, 204–213 (2006)

    Article  Google Scholar 

  49. C.-C. Lee, S.-Y. Lai, W.-B. Su, H.-L. Chen, C.-L. Chung, J.-H. Chen, Relationship between the microstructure development and the photoluminescence efficiency of electrospun poly(9,9-dioctylfluorene-2,7-diyl) fibers. J. Phys. Chem. C 117, 20387–20396 (2013)

    Article  Google Scholar 

  50. (a) R. Dersch, T. Liu, A. K. Schaper, A. Greiner, J.H. Wendorff, Electrospun nanofibers: Internal structure and intrinsic orientation. J. Polym. Sci. Pol. Chem. 41, 545–553 (2003); (b) L.M. Bellan, H. G. Craighead, Molecular orientation in individual electrospun nanofibers measured via polarized Raman spectroscopy. Polymer 49, 3125–3129 (2008)

    Google Scholar 

  51. (a) A. Arinstein, E. Zussman, Postprocesses in tubular electrospun nanofibers. Phys. Rev. E 76, 056303 (2007); (b) C.-L. Pai, M. C. Boyce, G.C. Rutledge, Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42, 2102–2114 (2009); (c) U. Stachewicz, R.J. Bailey, W. Wang, A.H. Barber, Size dependent mechanical properties of electrospun polymer fibers from a composite structure. Polymer 53, 5132–5137 (2012)

    Google Scholar 

  52. C.-C. Kuo, C.-T. Wang, W.-C. Chen, Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromol. Mater. Eng. 293, 999–1008 (2008)

    Article  Google Scholar 

  53. S. Pagliara, M.S. Vitiello, A. Camposeo, A. Polini, R. Cingolani, G. Scamarcio, D. Pisignano, Optical anisotropy in single light-emitting polymer nanofibers. J. Phys. Chem. C 115, 20399–20405 (2011)

    Article  Google Scholar 

  54. B. Ding, M. Wang, X. Wang, J. Yu, G. Sun, Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 13, 16–27 (2010)

    Article  Google Scholar 

  55. (a) J.R. Askim, M. Mahmoudi, Kenneth S. Suslick, Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42, 8649–8682 (2013); (b) X. Guo, Y. Ying, L. Tong, Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res. 47, 656–666 (2014)

    Google Scholar 

  56. M. Wang, G. Meng, Q. Huang, Y. Qian, Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ. Sci. Technol. 46, 367–373 (2012)

    Article  Google Scholar 

  57. P. Anzenbacher Jr., F. Li, M.A. Palacios, Toward wearable sensors: fluorescent attoreactor mats as optically encoded cross-reactive sensor arrays. Angew. Chem. 124, 2395–2398 (2012)

    Article  Google Scholar 

  58. F.J. Orriach-Fernández, A.L. Medina-Castillo, J.E. Díaz-Gómez, A. Mũnoz de la Pena, J.F. Fernández-Sánchez, A. Fernández-Gutiérrez, A sensing microfibre mat produced by electrospinning for the turn-on luminescence determination of Hg2+ in water samples. Sens. Actuators B 195, 8–14 (2014)

    Article  Google Scholar 

  59. (a) Y. Cai, L. Yan, G. Liu, H. Yuan, D. Xiao, In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg (II) sensing. Biosens. Bioelectron. 41, 875–879 (2013); (b) L. Heng, B. Wang, Y. Zhang, L. Zhang, B.Z. Tang, L. Jiang, Sensing mechanism of nanofibrous membranes for fluorescent detection of metal ion. J. Nanosci. Nanotechnol. 12, 8443–8447 (2012)

    Google Scholar 

  60. P. Anzenbacher Jr., M.A. Palacios, Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nat. Chem. 1, 80–86 (2009)

    Article  Google Scholar 

  61. B. Zu, Y. Guo, X. Dou, Nanostructure-based optoelectronic sensing of vapor phase explosives – a promising but challenging method. Nanoscale 5, 10693–10701 (2013)

    Article  Google Scholar 

  62. (a) T.M. Swager, The molecular wire approach to sensory signal amplification. Acc. Chem. Res. 31, 201–207 (1998); (b) D.T. Mc Quade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)

    Google Scholar 

  63. Y. Wang, A. La, Y. Ding, Y. Liu, Y. Lei, Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors. Adv. Funct. Mater. 22, 3547–3555 (2012)

    Article  Google Scholar 

  64. Y. Long, H. Chen, Y. Yang, H. Wang, Y. Yang, N. Li, K. Li, J. Pei, F. Liu, Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules 42, 6501–6509 (2009)

    Article  Google Scholar 

  65. W.-E. Lee, C.-J. Oh, I.-K. Kang, G. Kwak, Diphenylacetylene polymer nanofiber mats fabricated by freeze drying: preparation and application for explosive sensors. Macromol. Chem. Phys. 211, 1900–1908 (2010)

    Article  Google Scholar 

  66. L. Guo, B. Zu, Z. Yang, H. Cao, X. Zheng, X. Dou, APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection. Nanoscale 6, 1467–1473 (2014)

    Article  Google Scholar 

  67. J.S. Yang, T.M. Swager, Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials. J. Am. Chem. Soc. 120, 5321–5322 (1998)

    Article  Google Scholar 

  68. M.N. Velasco-Garcia, Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin. Cell Dev. Biol. 20, 27–33 (2009)

    Article  Google Scholar 

  69. C. Zhou, Y. Shi, X. Ding, M. Li, J. Luo, Z. Lu, D. Xiao, Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane. Anal. Chem. 85, 1171–1176 (2013)

    Article  Google Scholar 

  70. B.W. Davis, N. Niamnont, C.D. Hare, M. Sukwattanasinitt, Q. Cheng, Nanofibers doped with dendritic fluorophores for protein detection. ACS Appl. Mater. Interfaces 2, 1798–1803 (2010)

    Article  Google Scholar 

  71. B.W. Davis, N. Niamnont, R. Dillon, C.J. Bardeen, M. Sukwattanasinitt, Q. Cheng, FRET detection of proteins using fluorescently doped electrospun nanofibers and pattern recognition. Langmuir 27, 6401–6408 (2011)

    Article  Google Scholar 

  72. S.O. Han, W.K. Son, J.H. Youk, W.H. Park, Electrospinning of ultrafine cellulose fibers and fabrication of poly(butylene succinate) biocomposites reinforced by them. J. Appl. Polym. Sci. 107, 1954–1959 (2008)

    Article  Google Scholar 

  73. H. Wang, D. Wang, Z. Peng, W. Tang, N. Li, F. Liu, Assembly of DNA-functionalized gold nanoparticles on electrospun nanofibers as a fluorescent sensor for nucleic acids. Chem. Commun. 49, 5568–5570 (2013)

    Article  Google Scholar 

  74. S. Pagliara, A. Camposeo, F. Di Benedetto, A. Polini, E. Mele, L. Persano, R. Cingolani, D. Pisignano, Study of optical properties of electrospun light-emitting polymer fibers. Superlattice. Microstr. 47, 145–149 (2012)

    Article  Google Scholar 

  75. D. O’Carroll, I. Lieberwirth, G. Redmond, Melt-processed polyfluorene nanowires as active waveguides. Small 3, 1178–1183 (2007)

    Article  Google Scholar 

  76. C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, L. Tong, Quantum-dot-doped polymer nanofibers for optical sensing. Adv. Mater. 23, 3770–3774 (2011)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support from the Italian Minister of University and Research through the FIRB project RBFR08DJZI “Futuro in Ricerca” and the FIRB Projects RBNE08BNL7 “Merit” and from the Apulia Regional Projects ‘Networks of Public Research Laboratories’, WAFITECH (09) and M. I. T. T. (13). Prof. D. Pisignano is acknowledged for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Camposeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camposeo, A., Moffa, M., Persano, L. (2015). Electrospun Fluorescent Nanofibers and Their Application in Optical Sensing. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_6

Download citation

Publish with us

Policies and ethics