Skip to main content

Domain Decomposition Methods for Total Variation Minimization

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

  • 2599 Accesses

Abstract

In this paper, overlapping domain decomposition methods (DDMs) are used for solving the Rudin-Osher-Fatemi (ROF) model in image restoration. It is known that this problem is nonlinear and the minimization functional is non-strictly convex and non-differentiable. Therefore, it is difficult to analyze the convergence rate for this problem. In this work, we use the dual formulation of the ROF model in connection with proper subspace correction. With this approach, we overcome the problems caused by the non-strict-convexity and non-differentiability of the ROF model. However, the dual problem has a global constraint for the dual variable which is difficult to handle for subspace correction methods. We propose a stable unit decomposition, which allows us to construct the successive subspace correction method (SSC) and parallel subspace correction method (PSC) based domain decomposition. Numerical experiments are supplied to demonstrate the efficiency of our proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, R., Vogel, C.: Analysis of Bounded Variation Penalty Methods for Ill-Posed Problems. Inverse Probl. 10, 1217–1230 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Appleton, B., Talbot, H.: Globally Optimal Geodesic Active Contours. J. Math. Imaging Vis. 23, 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  3. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. With contributions by Chenery, H.B., Johnson, S.M., Karlin, S., Marschak, T., Solow, R.M. (eds.) Stanford Mathematical Studies in the Social Sciences, vol. III, Stanford University Press, Stanford (1958)

    Google Scholar 

  4. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chambolle, A.: An Algorithm for Total Variation Minimization and Applications. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chang, H., Zhang, X., Tai, X.C., Yang, D.: Domain Decomposition Methods for Nonlocal Total Variation Image Restoration. J. Sci. Comput. 60, 79–100 (2014)

    Article  MATH  Google Scholar 

  7. Chen, K., Tai, X.C.: On Semismooth Newton’s Methods for Total Variation Minimization. J. Sci. Comput. 33, 115–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dong, Y., Hintermüller, M., Neri, M.: An Efficient Primal-Dual Method for L 1 −TV Image Restoration. SIAM J. Imaging Sci. 2, 1168–1189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duan, Y., Tai, X.C.: Domain Decomposition Methods with Graph Cuts Algorithms for Total Variation Minimization. Adv. Comput. Math. 36, 175–199 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fornasier, M., Langer, A., Schönlieb, C.: Domain Decomposition Methods for Compressed Sensing. ArXiv preprint, arXiv:0902.0124 (2009)

    Google Scholar 

  11. Fornasier, M., Langer, A., Schönlieb, C.: A Convergent Overlapping Domain Decomposition Method for Total Variation Minimization. Numer. Math. 116, 645–685 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fornasier, M., Schönlieb, C.: Subspace Correction Methods for Total Variation and L 1 − Minimization. SIAM J. Numer. Anal. 47, 3397–3428 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Firsov, D., Lui, S.H.: Domain Decomposition Methods in Image Denoising Using Gaussian Curvature. J. Comput. Appl. Math. 193, 460–473 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldstein, T., Osher, S.: The Split Bregman Method for L1-Regularized Problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Glowinski, R., Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Google Scholar 

  16. Hintermüller, M., Kunisch, K.: Total Bounded Variation Regularization as a Bilaterally Constrained Optimaization Problem. SIAM. J. Appl. Math. 64, 1311–1333 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hintermüller, M., Langer, A.: Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed L 1/L 2 Data-Fidelity in Image Processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hintermüller, M., Langer, A.: Non-overlapping Domain Decomposition Methods for Dual Total Variation Based Image Denoising. J. Sci. Comput. (2014) doi:10.1007/s10915-014-9863-8

    Google Scholar 

  19. Marquina, A., Osher, S.: Explicit Algorithms for A New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal. SIAM J. Sci. Comput. 22, 387–405 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Müller, J.: Parallel Total Variation Minimization. University of Muenster, Diploma Thesis (2008)

    Google Scholar 

  21. Ng, M., Qi, L., Yang, Y., Huang, Y.: On Semismooth Newton’s Methods for Total Variation Minimization. J. Math. Imaging Vis. 27, 265–276 (2007)

    Article  MathSciNet  Google Scholar 

  22. Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  23. Scherzer, O.: Handbook of Mathematical Methods in Imaging. Springer, New York (2011)

    Book  MATH  Google Scholar 

  24. Tai, X.C.: Rate of Convergence for Some Constraint Decomposition Methods for Nonlinear Variational Inequalities. Numer. Math. 93, 755–786 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tai, X.C., Espedal, M.: Applications of a Space Decomposition Method to Linear and Nonlinear Elliptic Problems. Numer. Meth. Part. D. E. 14, 717–737 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tai, X.C., Espedal, M.: Rate of Convergence of Some Space Decomposition Methods for Linear and Nonlinear Problems. SIAM J. Numer. Anal. 35, 1558–1570 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tai, X.C., Xu, J.: Global and Uniform Convergence of Subspace Correction Methods for Some Convex Optimization Problems. Math. Comput. 71, 105–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tai, X.C., Duan, Y.P.: Domain Decomposition Methods with Graph Cuts Algorithms for Image Segmentation. Int. J. Numer. Anal. Model. 8, 137–155 (2011)

    MATH  MathSciNet  Google Scholar 

  29. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithm and Theory. Springer, Heidelberg (2005)

    Google Scholar 

  30. Vogel, C.: A Multigrid Method for Total Variation-Based Image Denoising. Computation and Control IV, Progress in Systems and Control Theory, 20, Birkhäuser Boston (1995)

    Google Scholar 

  31. Vogel, C.: Computational Methods for Inverse Problems. SIAM (2002)

    Google Scholar 

  32. Vogel, C., Oman, M.: Iterative Methods for Total Variation Denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vogel, C., Oman, M.: Fast, Robust Total Variation-Based Reconstruction of Noisy, Blurred Images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, Y., Yin, W., Zhang, Y.: A Fast Algorithm for Image Deblurring with Total Variation Regularization. Rice University CAAM Technical Report TR07-10 (2007)

    Google Scholar 

  36. Wu, C., Tai, X.C.: Augmented Lagrangian Method, Dual Methods and Split-Bregman Iterations for Rof, Vectorial TV and Higher Order Models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Xu, J., Tai, X.C., Wang, L.L.: A Two-Level Domain Decomposition Method for Image Restoration. Inverse Probl. Image 4, 523–545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu, J., Chang, H., Qin, J.: Domain Decomposition Method for Image Deblurring. J. Comput. Appl. Math. 271, 401–414 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhu, M., Chan, T.: An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration. UCLA, Center for Applied Math., CAM Reports No. 08-34 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chang, H., Tai, XC., Yang, D. (2015). Domain Decomposition Methods for Total Variation Minimization. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics