Skip to main content

Myxozoan Affinities and Route to Endoparasitism

  • Chapter
  • First Online:
Myxozoan Evolution, Ecology and Development

Abstract

There is now strong evidence that myxozoans have evolved from free-living cnidarians but until recently their higher level relationships have been the subject of considerable controversy. This chapter reviews the morphological and molecular evidence that has contributed to problems in placement and how further collective support has finally resolved their cnidarian affinity. We then consider the inherently difficult but fascinating topic of how myxozoans may have evolved as endoparasitic cnidarians. We first explore how a close association of free-living precursors could have led to the evolution of myxozoans with simple life cycles and the nature of the first myxozoan hosts. We propose that either freshwater bryozoans or fish (or their precursors) were ancestral hosts (in view of the more derived nature of myxozoans that infect annelids and the fact that fish are hosts for most members of all major myxozoan clades) and suggest that the morphological complexity of myxozoans in freshwater bryozoans renders a scenario of fish as first hosts less likely. We then discuss how new hosts may have been adopted subsequently, resulting in the complex life cycles involving invertebrate and vertebrate hosts that now characterise all myxozoans. Cnidarian traits, including life cycle plasticity and a capacity to evolve novel propagative stages, ultimately support many different scenarios regarding the route to endoparasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elfattah A, Fontes I, Kumar G, Soliman H, Hartikainen H, Okamura B, El-Matbouli M (2014) Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease. Parasitology 141:482–490

    PubMed  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    CAS  PubMed  Google Scholar 

  • Anderson CL, Canning EU, Okamura B (1998) A triploblast origin for Myxozoa? Nature 392:346

    CAS  PubMed  Google Scholar 

  • Anderson CL, Canning EU, Okamura B (1999) Molecular data implicate bryozoans as hosts for PKX (Phylum Myxozoa) and identify a clade of bryozoan parasites within the Myxozoa. Parasitology 119:555–561

    PubMed  Google Scholar 

  • Applegate RL (1966) The use of a bryozoan, Fredericella sultana, as food by sunfish in Bull Shoals Reservoir. Limnol Oceanogr 11:129–130

    Google Scholar 

  • Azimzedeh J, Wong ML, Downhour DM, Alvarado AS, Marshall WF (2012) Centrosome loss in the evolution of planarians. Science 335:461–463

    Google Scholar 

  • Balasubramanian PG, Beckmann A, Warnken U, Schnoelzer M, Schueler A, Bornberg-Bauer E, Holstein TW, Özbek S (2012) The proteome of the Hydra nematocyst. J Biol Chem 287:9672–9681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bigelow HB (1909) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission Steamer “Albatross,” from October, 1904, to March, 1905, Lieut.-Commander L.M. Garrett, U.S.N., commanding. XVI. The Medusae. Mem Mus Comp Zool 37:1–243 [BHL] See http://www.mcz.harvard.edu/Publications/search_pubs.html?publication=memoirs

  • Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68 (Suppl 2):1–454

    Google Scholar 

  • Brabec J (2012) Molecular systematics and evolution of basal cestode lineages. PhD dissertation, University of South Bohemia in České Budějovice

    Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci Biol 89:8750–8753

    CAS  Google Scholar 

  • Brown SP, Renaud F, Guégan JF, Thomas F (2001) Evolution of trophic transmission in parasites: the need to reach a mating place? J Evol Biol 14:815–820

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Bumann D, Puls G (1996) Infestation with larvae of the sea anemone Edwardsia lineata affects nutrition and growth of the ctenophore Mnemiopsis leidyi. Parasitology 113:123–128

    Google Scholar 

  • Burton PM (2008) Insights from diploblasts: the evolution of mesoderm and muscle. J Exp Zool B Mol Dev Evol 310:5–14

    PubMed  Google Scholar 

  • Bushnell JH, Rao KS (1979) Freshwater Bryozoa: microarchitecture of statoblasts and some aufwuchs animal associations. In: Larwood GP, Abbott MB (eds) Advances in bryozoology. Academic Press, London, pp 75–92

    Google Scholar 

  • Bütschli O (1882) Myxosporidia. In: Winter CF (ed) Bronn’s Klassen und Ordnungen des Tierreichs. 1. Protozoa, 2nd edn. Leipzig, pp 590–603

    Google Scholar 

  • Canning EU, Okamura B (2004) Biodiversity and evolution of the Myxozoa. Adv Parasitol 56:43–131

    PubMed  Google Scholar 

  • Canning EU, Curry A, Feist SW, Longshaw M, Okamura B (2000) A new class and order of myxozoans to accommodate parasites of bryozoans with ultrastructural observations on Tetracapsula bryosalmonae (PKX organism). J Eukaryot Microbiol 47:456–468

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74:2031–2045

    CAS  Google Scholar 

  • Carré D, Carré C, Mills CE (1989) Novel cnidocysts of narcomedusae and a medusivorous ctenophore, and confirmation of kleptocnidism. Tiss Cell 21:23–734

    Google Scholar 

  • Choisy M, Brown SP, Lafferty KD, Thomas F (2003) Evolution of trophic transmission in parasites: why add intermediate hosts? Am Nat 162:172–181

    PubMed  Google Scholar 

  • Conway Morris S (1991) Problematic taxa: a problem for biology or biologists? In: Simonetta AM, Conway Morris S (eds) Early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp 19–24

    Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Littlewood Dt (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254

    Google Scholar 

  • Dendy JS (1963) Observations on bryozoan ecology in farm ponds. Limnol Oceanogr 8:478–482

    Google Scholar 

  • David CN, Özbek S, Adamczyk P, Meier S, Pauly B, Chapman J, Hwang JS, Gojobori T, Holstein TW (2008) Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends Genet 24:431–438

    CAS  PubMed  Google Scholar 

  • Dohrmann M, Wörheide G (2013) Novel scenarios of early animal evolution—is it time to rewrite textbooks? Integr Comp Biol 53:503–511

    PubMed  Google Scholar 

  • Donoghue PCJ, Keating JN (2014) Early vertebrate evolution. Palaeontology 57:879–893

    Google Scholar 

  • Edmunds M (1966) Protective mechanisms in the Eolidacea (Mollusca Nudibranchia). J Linn Soc London Zool 46:27–71

    Google Scholar 

  • Emery C (1909) I missosporidii sono Protozoi? Monit Zool Ital 22:247

    Google Scholar 

  • Evans NM, Lindner A, Raikova EV, Collins AG, Cartwright P (2008) Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evol Biol 8:139

    PubMed Central  PubMed  Google Scholar 

  • Evans NM, Lindner A, Raikova EV, Collins AG, Cartwright P (2009) Correction: Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evol Biol 9:165

    PubMed Central  PubMed  Google Scholar 

  • Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P (2010) The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal datasets. Mol Biol Evol 27:2733–2746

    CAS  PubMed  Google Scholar 

  • Fautin DG (2009) Structural diversity, systematics, and evolution of cnidae. Toxicon 54:1054–1064

    CAS  PubMed  Google Scholar 

  • Feng J-M, Xiong J, Zhang J-Y, Yan Y-L, Yao B, Zhou Z-G, Miao W (2014) New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria. Mol Phyl Evol 81:10–18

    Google Scholar 

  • Ferguson JC (1982) A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biol Bull 162:1–17

    CAS  Google Scholar 

  • Fiala I, Bartošová P (2010) History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol Biol 10:228

    PubMed Central  PubMed  Google Scholar 

  • Fiala I, Kysliík J, Cinková M, Bartošová P (2013) Analysis of mitochondrial genomic data reveals the phylogenetic placement of Myxozoa and Polypodium hydriforme within the medusozoan cnidarians. In: Sixteenth European association of fish pathologists conference, Tampere, Finland, 2–6 Sept 2013

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 12:748–753

    Google Scholar 

  • Grassé P-P (1970) Embranchement des Myxozoaires In: Grassé P-P, Poisson RR, Tuzet O (eds) Précis de Zoologie vol 1, Invertébrés. Paris, Masson et Cie

    Google Scholar 

  • Gray GC, Martin VJ, Satterlie RA (2009) Ultrastructure of the retinal synapses in cubozoans. Biol Bull 217:35–49

    PubMed  Google Scholar 

  • Grell KG (1956) Protozoologie. Springer, Berlin

    Google Scholar 

  • Griparic L, van der Bliek AM (2001) The many shapes of mitochondrial membranes. Traffic 2:235–244

    CAS  PubMed  Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Ann Rev Ecol Evol Syst 38:621–654

    Google Scholar 

  • Grover R, Maguer F-J, Allemand D, Ferrier-Pagès C (2008) Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol 211:860–865

    CAS  PubMed  Google Scholar 

  • Gruhl A, Okamura B (2012) Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo 3:10. doi:10.1186/2041-9139-3-10

    PubMed Central  PubMed  Google Scholar 

  • Gupta R (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    CAS  PubMed  Google Scholar 

  • Hanelt B, van Schyndel D, Adema CM, Lewis LA, Loker ES (1996) The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Mol Biol Evol 13:1187–1191

    CAS  PubMed  Google Scholar 

  • Hartikainen H, Ashford OS, Berney C, Okamura B, Feist SW, Baker-Austin C, Stentiford G, Bass D (2014a) Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians. ISME J 8:177–186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartikainen H, Stentiford GD, Bateman KS, Berney C, Feist SW, Longshaw M, Okamura B, Stone D, Ward G, Wood C, Bass D (2014b) Mikrocytids: a novel radiation of parasitic protists with a broad invertebrate host range and distribution. Curr Biol 24:807–812

    CAS  PubMed  Google Scholar 

  • Hastings AB (1943) Polyzoa (Bryozoa). I. Scrupocellariidae, Epistomiidae, Farciminariidae, Bicellariellidae, Aeteidae, Scrupariidae. Discov Rep 32:301–510

    Google Scholar 

  • Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischlera H (2003) The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Mol Phyl Evol 26:155–164

    CAS  Google Scholar 

  • Hill SLL, Okamura B (2007) Endoparasitism in colonial hosts: patterns and processes. Parasitology 134:841–852

    CAS  PubMed  Google Scholar 

  • Hill N, Leow A, Bleidorn C, Groth D, Tiedemann R, Selbig J, Hartmann S (2013) Analysis of phylogenetic signal in protostomial intron patterns using mutual information. Theory Biosci 132:93–104

    PubMed  Google Scholar 

  • Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci Biol 96:580–585

    CAS  Google Scholar 

  • Hochberg FG, Kruse C (2009) Chapter 18. Phylum Orthonectida. In: Gordon DP (ed) New Zealand inventory of biodiversity, vol 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Canterbury University Press, Christchurch, pp 359–361

    Google Scholar 

  • Høeg JT (1992) The phylogenetic position of the Rhizocephala: are they truly barnacles? Acta Zool 73:323–326

    Google Scholar 

  • Holland JW, Okamura B, Hartikainen H, Secombes CJ (2011) A novel minicollagen gene links cnidarians and myxozoans. Proc R Soc B 278:546–553

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang JS, Takaku Y, Momose T, Adamczyk P, Özbek S, Ikeo K, Khalturin K, Hemmrich G, Bosch TCG, Holstein TW, David CN, Gojobori T (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci Biol 107:18539–18544. doi:10.1073/pnas.1003256107

    CAS  Google Scholar 

  • Hyman LH (1940) The invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York

    Google Scholar 

  • Hyman LH (1959) The invertebrates: smaller coelomate groups. McGraw-Hill, New York

    Google Scholar 

  • Ikeda I (1912) Studies on some sporozoan parasites of sipunculoids. I. The life history of a new actinomyxidian Tetractinomyxon intermedium g. et sp. nov. Arch Protistenkd 25:240–272

    Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553

    CAS  PubMed  Google Scholar 

  • Jankowski T, Collins AG, Campbell R (2008) Global diversity of inland water cnidarians. Hydrobiologia 595:35–40

    Google Scholar 

  • Jenner RA, Littlewood DTJ (2008) Problematica old and new. Phil Trans R Soc B 363:1503–1512

    PubMed Central  PubMed  Google Scholar 

  • Jiménez-Guri E, Philippe H, Okamura B, Holland PWH (2007) Buddenbrockia is a cnidarian worm. Science 317:116–118

    PubMed  Google Scholar 

  • Jurine LL (1825) Histoire des poissons du Lac Léman. Mém Soc Phys Hist Nat Genève 3

    Google Scholar 

  • Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV (2012) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Gen Biol Evol 4:1–12

    CAS  Google Scholar 

  • Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallett SL, Lester RJG, Longshaw M, Palenzuela O, Siddall M, Xiao C (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48:395–413

    CAS  PubMed  Google Scholar 

  • Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG (2009) More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 25:404–413

    CAS  PubMed  Google Scholar 

  • Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S and DNA sequences. Mol Biol Evol 16:423–427

    CAS  PubMed  Google Scholar 

  • Kodádková A, Bartošová-Sojková P, Fiala I (2014) Bipteria sp.—old parasite in an old host: tracing the origin of myxosporean parasitism in the vertebrates. In: Talk presented at the seventh international symposium on aquatic animal health, Portland, Oregon, 31 Aug–4 Sept 2014

    Google Scholar 

  • Kudo RR (1966) Protozoology, 5th edn. Charles C. Thomas Publisher, Springfield

    Google Scholar 

  • Lehmann J, Stadler PF, Krauss V (2013) Near intron pairs and the metazoan tree. Mol Phyl Evol 66:811–823

    CAS  Google Scholar 

  • Littlewood DTJ, Rohde K, Bray RA, Herniou EA (1999) Phylogeny of the Platyhelminthes and the evolution of parasitism. Biol J Linn Soc 68:257–287

    Google Scholar 

  • Lom J (1969) Notes on the ultrastructure and sporoblast development in fish parasitizing myxosporidian of the genus Sphaeromyxa. Z Zellforsch Mikrosk Anat 97:416–437

    CAS  PubMed  Google Scholar 

  • Lom J (1990) Myxozoa. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of the Protoctista; the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 36–52

    Google Scholar 

  • Lom J, Dyková I (1997) Ultrastructural features of the actinosporean phase of Myxosporea (Phylum, Myxozoa): a comparative study. Acta Protozool 36:83–103

    Google Scholar 

  • Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53:1–36

    PubMed  Google Scholar 

  • Margulis L, Schwartz K (1998) Five kingdoms, an illustrated guide to the phyla of life on earth, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Markiw ME, Wolf K (1983) Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worms (Annelida: Oligochaeta) in its life cycle. J Protozool 30:561–564

    Google Scholar 

  • Marquès A (1987) La sexualité chez les Actinomyxidies: étude chez Neoactinomyxon eiseniellae (Ormières et Frézil, 1969), Actinosporea, Noble, 1980; Myxozoa, Grassé, 1970. Ann Sci Nat Zool Paris 8:81–101

    Google Scholar 

  • McKenna DD, Farrell BD (2010) 9-Genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS ONE 5(7):e11887. doi:10.1371/journal.pone.0011887

    PubMed Central  PubMed  Google Scholar 

  • Milde S, Hemmrich G, Anton-Erxleben F, Khalturin K, Wittlieb J, Bosch TCG (2009) Characterization of taxonomically restricted genes in a phylum-restricted cell type. Genome Biol 10:R8. doi:10.1186/gb-2009-10-1-r8

    PubMed Central  PubMed  Google Scholar 

  • Monteiro AS, Okamura B, Holland PWH (2002) Orphan worm finds a home: Buddenbrockia is a myxozoan. Mol Biol Evol 19:968–971

    CAS  PubMed  Google Scholar 

  • Mori K, Takashi-Iwanaga H, Iwanaga T (2000) Parasitic forms of a myxosporean in the arctic lamprey, Lampetra japonica: an ultrastructural study. Jap J Vet Res 48:137–146

    CAS  Google Scholar 

  • Near TJ, Garey JR, Nadler SA (1998) Phylogenetic relationship of the Acanthocephala inferred from 18S ribosomal DNAsequences. Mol Phylogenet Evol 10:287–298

    CAS  PubMed  Google Scholar 

  • Nesnidal MP, Helmkampf M, Bruchhaus I, El-Matbouli M, Hausforf B (2013) Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS ONE 8(1):e54576. doi:10.1371/journal.pone.0054576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla. 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Müller WEG, Nickel M, Schierwater B, Vacelet J, Wiens M, Wörheide G (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogen Evol 67:223–233

    Google Scholar 

  • Okamura B, Curry A, Wood TS, Canning EU (2002) Ultrastructure of Buddenbrockia sp., identifies it as a myxozoan and verifies the bilaterian origin of the Myxozoa. Parasitology 124:215–223

    CAS  PubMed  Google Scholar 

  • Oliverio AM, Katz LA (2014) The dynamic nature of genomes across the tree of life. Genome Biol Evol 6(3):482–488

    PubMed Central  PubMed  Google Scholar 

  • Özbek S, Balasubramanian PG, Holstein TW (2009) Cnidocyst structure and the biomechanics of discharge. Toxicon 54:1038–1045

    PubMed  Google Scholar 

  • Pagès F, Corbera J, Lindsay D (2007) Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae). Plankton Benthos Res 2:83–90

    Google Scholar 

  • Park E, Hwang DS, Lee JS, Song JI, Seo TK, Won YJ (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 62:329–345

    PubMed  Google Scholar 

  • Parker GA, Chubb JC, Roberts GN, Michaud M, Milinski M (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480–484

    CAS  PubMed  Google Scholar 

  • Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Bol Biol Evol 13:1128–1132

    CAS  Google Scholar 

  • Pechenik JA (2009) Biology of the invertebrates, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Philippe H, Roure B (2011) Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biol 9:91. doi:10.1186/1741-7007-9-91

    PubMed Central  PubMed  Google Scholar 

  • Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 21:614–620

    PubMed  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Raddum GG, Johnsen TM (1983) Growth and feeding of Fredericella sultana (Bryozoa) in the outlet of a humic acid lake. Hydrobiologia 101:115–120

    Google Scholar 

  • Raikova EV (1988) On systematic position of Polypodium hydriforme Ussov (Cnidaria). In: Koltun V, Stepanjants SD (eds) Sponges and Cnidaria—Contemporary State and Perspectives of Research. Zoological Institute of the Academy of Sciences of the USSR, Leingrad, pp 116–122

    Google Scholar 

  • Raikova EV (1994) Life cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of Acipenseriform fishes. J Parasitol 80:1–22

    CAS  PubMed  Google Scholar 

  • Raikova EV (2008) Cytomorphological peculiarities of Polypodium hydriforme (Cnidaria). J Mar Biol Assoc UK 88:1695–1702

    Google Scholar 

  • Rauch G, Kalbe M, Reusch TBH (2005) How a complex life cycle can improve a parasite’s sex life. J Evol Biol 18:1069–1075

    CAS  PubMed  Google Scholar 

  • Redondo MJ, Quiroga MI, Palenzuela O, Nieto JM, Alvarez-Pellitero P (2003) Ultrastructural studies on the development of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot (Scophthalmus maximus L.). Parasitol Res 90:192–202

    PubMed  Google Scholar 

  • Riva A, Tandler B, Loffredo F, Vazquez F, Hoppel C (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol-Heart C 289:H868–H872

    CAS  Google Scholar 

  • Rokas A, Holland P (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    PubMed  Google Scholar 

  • Rubinstein N, Feldstein T, Szitenberg A, Diamant A, Philippe H, Cartwright P, Huchon D (2013) Deciphering the cnidarian origin of Myxozoa using phylogenomics. Poster presented at the 8th international conference on coelenterate biology, Eilat, Israel, 1–6 Dec 2013

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. A functional evolutionary approach, 7th edn. Brooks/Cole-Thomson Learning, Belmont, USA

    Google Scholar 

  • Schlegel M, Lom J, Stechmann A, Bernhard D, Leipe D, Dyková I, Sogin ML (1996) Phylogenetic analysis of complete small unit ribosomal RNA coding region of Myxidium lieberkuehni: evidence that Myxozoa are Metazoa and related to the Bilateria. Arch Protistenk 147:1–9

    Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology. the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford

    Google Scholar 

  • Schröder O (1910) Buddenbrockia plumatellae, eine neue Mesozoenart aus Plumatella repens. L. und Pl. fungosa Pall. Z Wiss Zool 96:525–537

    Google Scholar 

  • Seipel K, Schmid V (2006) Mesodermal anatomies in cnidarian polyps and medusa. Int J Dev Biol 50:589–599

    PubMed  Google Scholar 

  • Seravin LN (1993) The basic types and forms of the fine structure of mitochondrial cristae: the degree of their evolutionary stability (capacity for morphological transformations). Tsitologiia 35:3–34

    CAS  PubMed  Google Scholar 

  • Shostak S (1993) A symbiogenetic theory for the origin of cnidocysts in Cnidaria. BioSystems 29:49–58

    CAS  PubMed  Google Scholar 

  • Shpirer E, Chang E (2014) Diversity and evolution of myxozoan minicollagens and nematogalectins. BMC Evol Biol 14:1–14. doi:10.1186/1471-2148-8-75

    Google Scholar 

  • Shul’man SS (1990) Myxosporidia of the USSR. Russian Translations Series 75. A.A. Balkema/Rotterdam

    Google Scholar 

  • Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967

    CAS  PubMed  Google Scholar 

  • Smothers JF, van Dohlen CD, Smith LH Jr, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721

    CAS  PubMed  Google Scholar 

  • Spaulding JG (1972) The life cycle of Peachia quinquecapitata, an anemone parasitic on medusae during its larval development. Biol Bull 143:440–453

    Google Scholar 

  • Štolc A (1899) Actinomyxidies, nouveau groupe de Mesozoaires parent des Myxosporidies. Bull Int L’Acad Sci Bohème 12:1–12

    Google Scholar 

  • Struck TH (2013) The impact of paralogy on phylogenomic studies—a case study on annelid relationships. PLoS ONE 8:e62892. doi:10.1371/journal.pone.0062892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2:443

    PubMed Central  PubMed  Google Scholar 

  • Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539

    PubMed  Google Scholar 

  • Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci Biol 94:8001–8005

    CAS  Google Scholar 

  • Waters AW (1912) A structure in Adeonella (Laminopora) contorta (Michelin) and some other Bryozoa, together with remarks on the Adeonidae. Ann Mag Nat Hist Ser. 8, vol ix, pp 489–500

    Google Scholar 

  • Weill R (1938) L’interpretation des Cnidosporidies et la valeur taxonomique de leur cnidome. Leur cycle comparé à la phase larvaire des Narcomeduses cuninides. Trav Stat Zool Wimereaux 13:727–744

    Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    CAS  PubMed  Google Scholar 

  • Winnipenninckx BMH, Van de Peer Y, Backeljau T (1998) Metazoan relationships on the basis of 18S rRNA sequences: a few years later…. Am Zool 38:888–906

    Google Scholar 

  • Wolf K, Markiw ME (1984) Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452

    CAS  PubMed  Google Scholar 

  • Wood JS, Epp JK, Mitton JB (2002) Preliminary evidence that M. cerebralis is amitochondriate. In: Paper presented at the 2002 national whirling disease symposium, Denver, Colorado, 13–15 Feb 2002

    Google Scholar 

  • Yahaloumi D, Rubinstein N, Feldstein T, Diamant A, Huchon D (2013) Evolution of myxozoan mitochondrial genome: linear chromosomes and extreme evolutionary rates. Poster presented at the 8th international conference on coelenterate biology, Eilat, Israel, 1–6 Dec 2013

    Google Scholar 

  • Yokoyama H, Masuda K (2001) Kudoa sp. (Myxozoa) causing a post-mortem myoliquefaction of North-Pacific octopus Paroctopus dofleini (Cephalopoda: Octopodidae). Bull Eur Assoc Fish Pathol 21:266–268

    Google Scholar 

  • Zrzavý J, Hypša V (2003) Myxozoa, Polypodium, and the origin of the Bilateria: the phylogenetic position of “Endocnidozoa” in the light of the rediscovery of Buddenbrockia. Cladistics 19:164–169

    Google Scholar 

  • Zrzavý J, Mihulka S, Kepka P, Bezdĕk A, Tietz D (1998) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285

    Google Scholar 

Download references

Acknowledgments

Recent research on Buddenbrockia musculature, localisation of minicollagens in Tetracapsuloides bryosalmonae and detection of Buddenbrockia minicollagens in transcriptome libraries was supported by a Marie Curie Intra-European Fellowship (272772). Earlier work on Buddenbrockia, recognition of the Malacosporea and myxozoan phylogeny was supported by the Natural Environment Research Council (GR3/11068, NER/A/S/1999/00075, GR9/04271), the Department of Agriculture, Fisheries and Rural Affairs (FC 1112) and the Biotechnology and Biological Sciences Research Council (43/G19271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okamura, B., Gruhl, A. (2015). Myxozoan Affinities and Route to Endoparasitism. In: Okamura, B., Gruhl, A., Bartholomew, J. (eds) Myxozoan Evolution, Ecology and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14753-6_2

Download citation

Publish with us

Policies and ethics