Skip to main content

Performance Metrics for the Putting Process

  • Chapter
  • First Online:
The Science of Golf Putting

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 900 Accesses

Abstract

Although most of the traditional research around sport science is centered on the product variables, many researchers have been working toward a better understanding of the process measurements of motor execution. By studying those variables, one may further understand the reasons behind the stability and variability of the final outcome (i.e., the product variables previously presented). In spite of this, several authors, such as Delay et al. (1997), Coello et al. (2000), Hume et al. (2005), Couceiro et al. (2013) and Dias et al. (2013) have proposed methodologies to study process variables in golf putting during each of its phases (cf. Chap. 2), giving particular attention to the position, velocity and acceleration of the putter. Most of the current research on this subject focuses on specific properties of the process variables, such as amplitude, period, maximum or minimum values, etc. This chapter will start by presenting the insights regarding variables provided in the literature. Despite the useful information provided by those process variables, the difficulty remains in proposing an adequate analysis methodology encompassing the overall motor execution of the athlete. This is still considered an open challenge since, as opposed to the product variables previously presented, most of the process variables, either related to golf putting or not, are time-variant, i.e., they are classified as a time series. Those variables are directly related with human movement and, as biological processes, the analysis should consider the overall information over time. However, this sort of tool, mostly of a non-linear nature, requires specialized knowledge on engineering and mathematics. Nevertheless, after introducing the most traditional research around putting process variables, this chapter will delineate a methodology to bring the science of golf to a new level of understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.esat.kuleuven.be/sista/lssvmlab/.

References

  • Araújo D, Davids K, Hristovski R (2006) The ecological dynamics of decision making in sport. Psychol Sport Exerc 7(6):653–676. doi:10.1080/17461391.2014.928749

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, New York

    Google Scholar 

  • Coello Y, Delay D, Nougier V, Orliaguet JP (2000) Temporal control of impact movement: the “time from departure” control hypothesis in golf putting. Int J Sport Psychol 31(1):24–46. ISSN 0047-0767

    Google Scholar 

  • Couceiro MS, Dias G, Martins FML, Luz JM (2012a) A fractional calculus approach for the evaluation of the golf lip-out. SIViP 6(3):437–443. doi:10.1007/s11760-012-0317-1

    Article  Google Scholar 

  • Couceiro MS, Portugal D, Gonçalves N, Rocha R, Luz JM, Figueiredo CM, Dias G (2012b) A methodology for detection and estimation in the analysis of golf putting. Pattern Anal Appl 16:459–474. doi:10.1007/s10044-012-0276-8

    Article  Google Scholar 

  • Couceiro MS, Dias G, Mendes R, Araújo D (2013) Accuracy of pattern detection methods in the performance of golf putting. J Mot Behav 45(1):37–53. doi:10.1080/00222895.2012.740100

    Article  Google Scholar 

  • Davids K, Button C, Bennett SJ (2008) Dynamics of skill acquisition—a constraints-led approach. Human Kinetics Publishers, Champaign

    Google Scholar 

  • Delay D, Nougier V, Orliaguet JP, Coello Y (1997) Movement control in golf putting. Hum Mov Sci 16(5):597–619. doi:10.1016/S0167-9457(97)00008-0

    Article  Google Scholar 

  • Dias G, Mendes R, Couceiro MS, Figueiredo C, Luz JMA (2013) On a ball’s trajectory model for putting’s evaluation, computational intelligence and decision making—trends and applications, from intelligent systems, control and automation: science and engineering bookseries. Springer, London

    Google Scholar 

  • Dias G, Couceiro MS, Barreiros J, Clemente FM, Mendes R, Martins FM (2014a) Distance and slope constraints: adaptation and variability in golf putting. Mot Control 18(3):221–243. doi:10.1123/mc.2013-0055

    Article  Google Scholar 

  • Dias G, Couceiro M, Clemente F, Martins F, Mendes R (2014b) A new approach for the study of golf putting. S Afr J Res Sport Phys 36(2):61–77. ISBN 0379-9069

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A New Optimizer Using Particle Swarm Theory. Proc of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan. IEEE Service Center Piscataway NJ:39– 43

    Google Scholar 

  • Gershenfeld N (2011) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Ghamisi P, Couceiro MS, Martins FM, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52:2382–2394

    Article  Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical Optimization Academic Press

    Google Scholar 

  • Gleick J (1987) Chaos: making a new science, Viking Penguin, New York

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349. doi:10.1103/PhysRevLett.50.346

    Article  MathSciNet  Google Scholar 

  • Harbourne RT, Stergiou N (2009) Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. JNPT Am Phys Ther 89(3):267–282. doi:10.2522/ptj.20080130

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, vol 2, no 1. Springer, New York. doi:10.1007/978-0-387-84858-7

  • Hume PA, Keogh J, Reid D (2005) The role of biomechanics in maximising distance and accuracy of golf shots. Sports Med 35(5):429–449. doi:10.2165/00007256-200535050-00005

    Article  Google Scholar 

  • Jonassen DH, Grabowski BL (1993) Handbook of individual differences, learning and instruction. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Karlsen J (2003) Golf putting: an analysis of elite-players technique and performance. Dissertation, Norway School of Sport Sciences

    Google Scholar 

  • Karlsen J, Smith G, Nilsson J (2008) The stroke has only a minor influence on direction consistency in golf putting among elite players. J Sports Sci 26(3):243–250. doi:10.1080/02640410701530902

  • Newell KM (1986) Constraints on the development of coordination. In: Wade MG, Whiting HTA (eds) Motor development in children: aspects of coordination and control. Martinus Nijhoff, Boston

    Google Scholar 

  • Pincus S, Singer BH (1998) A recipe for randomness. Proc Natl Acad Sci USA 95(18):10367–10372

    Article  MATH  MathSciNet  Google Scholar 

  • Pincus S, Gladstone MIM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345. doi:10.1007/BF01619355

    Article  Google Scholar 

  • Prusinkiewicz P (2004) Modeling plant growth and development. Curr Opin Plant Biol 7(1):79–83

    Article  Google Scholar 

  • Rosenstein MT, Collins JJ, Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys Nonlinear Phenom 65(1–2):117–134. doi:10.1016/0167-2789(93)90009-P

    Article  MATH  Google Scholar 

  • Sato S, Sano M, Sawada Y (1987) Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Prog Theor Phys 77:1–5

    Google Scholar 

  • Schöllhorn W, Mayer-Kress G, Newell KM, Michelbrink M (2008) Time scales of adaptive behavior and motor learning in the presence of stochastic perturbations. Hum Mov Sci 28(3):319–333. doi:10.1016/j.humov.2008.10.005

    Article  Google Scholar 

  • Stergiou N, Decker LM (2011) Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci 30(5):869–888. doi:10.1016/j.humov.2011.06.002

    Article  Google Scholar 

  • Stergiou N, Buzzi UH, Kurz MJ, Heidel J (2004) Non-linear tools in human movement. In: Stergiou N (ed) Innovative analyses of human movement. Human Kinetics Publishers, Champaign, pp 163–186

    Google Scholar 

  • Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2009) Least squares support vector machines. World Scientific, Singapore

    Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In dynamical systems and turbulence, Warwick 1980. Springer, Berlin, pp 366–381. doi:10.1007/BFb0091924

  • Tillett J, Rao TM, Sahin F, Rao R, Brockport S (2005) Darwinian particle swarm optimization. In: Prasad B (ed) Proceedings of the 2nd Indian international conference on artificial intelligence. Pune, India, pp 1474–1487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Dias .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Dias, G., Couceiro, M.S. (2015). Performance Metrics for the Putting Process. In: The Science of Golf Putting. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14880-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14880-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14879-3

  • Online ISBN: 978-3-319-14880-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics