Skip to main content

Spectral (Re)construction of Urban Street Networks: Generative Design Using Global Information from Structure

  • Conference paper
Design Computing and Cognition '14

Abstract

Modeling and analysis of urban form is typically performed using local generative design techniques, (e.g., shape grammars), with closed sets of local rules operating on elements. While this approach is powerful, the open variety of possible non-unique choices over the element and rule sets does not answer an important closure question: How much information, i.e., how many elements and rules, exhaustively capture all the information on structure? This paper investigates the inverted principle: using global system information to reconstruct a design. We show that orthogonal eigenmodes of a street network’s adjacency matrix capture global system information, and can be used to exactly reconstruct these networks. Further, by randomly perturbing the eigenmodes, new street networks of similar typology are generated. Thus, eigenmodes are global generators of structure. Outcomes provide new mechanisms for measuring and describing typology, morphology, and urban structure, and new future directions for generative design using global system information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batty M (2013) The new science of cities. MIT Press, Cambridge, MA

    Google Scholar 

  2. Barthelemy M et al (2013) Self-organization versus top-down planning in the evolution of a city. Nat Sci Rep 3:Article no. 2153

    Google Scholar 

  3. Strano E et al (2013) Elementary processes governing the evolution of road networks. Nat Sci Rep 2:Article no. 296

    Google Scholar 

  4. Kostof S (1999) The city shaped: urban patterns and meanings through history. Thames and Hudson, New York

    Google Scholar 

  5. Kostof S (2005) The city assembled: elements of urban form through history. Thames and Hudson, New York

    Google Scholar 

  6. Rossi A (1984) The architecture of the city. MIT Press, Cambridge, MA

    Google Scholar 

  7. Alexander C (1977) A pattern language: towns, buildings, construction. Oxford University Press, New York

    Google Scholar 

  8. Alexander C (1966) A city is not a tree. Design, London, Council of Industrial Design:No. 206

    Google Scholar 

  9. Hillier B, Hanson J (1984) The social logic of space. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent based models, and fractals. MIT Press, Cambridge, MA

    Google Scholar 

  11. Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Academic, San Diego

    MATH  Google Scholar 

  12. Stiny G (1980) Introduction to shape and shape grammars. Environ Plan B: Plan Des 7:343–351

    Article  Google Scholar 

  13. Stiny G, Mitchell WJ (1978) The Palladian grammar. Environ Plan B: Plan Des 5:5–18

    Article  Google Scholar 

  14. Duarte JP, Rocha JM, Soares GD (2007) Unveiling the structure of the Marrakech Medina: a shape grammar and an interpreter for generating urban form. Artif Intell Eng Des Anal Manuf 21:317–349

    Article  Google Scholar 

  15. Haggett P, Chorley RJ (1969) Network analysis in geography. Edward Arnold, London

    Google Scholar 

  16. Porta S, Crucitti P, Latora V (2006) The network analysis of urban streets: a primal approach. Environ Plan B: Plan Des 33(5):705–725

    Article  Google Scholar 

  17. Porta S et al (2009) Street centralities and densities of retail and services in Bologna. Environ Plan B: Plan Des 36:450–465

    Article  Google Scholar 

  18. Barthelemy M (2011) Spatial networks. Phys Rep 499:1–101

    Article  MathSciNet  Google Scholar 

  19. Sarkar S (2013) Street network analysis for understanding typology in cities: case study on Sydney CBD and suburbs. In: State of Australian Cities (SOAC) Conference. Sydney, Australia

    Google Scholar 

  20. Hanna S (2012) A representational scheme for the extraction of urban genotypes. In: Gero JS (ed) Design computing and cognition. Springer

    Google Scholar 

  21. Hanna S (2012) Comparative analysis of neighborhoods using local graph spectra. In: Eighth International Space Syntax Symposium. Santiago, Chile

    Google Scholar 

  22. Hanna S (2007) Representation and generation of plans using graph spectra. In: Sixth International Space Syntax Symposium, Istanbul, Turkey

    Google Scholar 

  23. Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  24. Sarkar S, Dong A (2011) Community detection in graphs using singular value decomposition. Phys Rev E 83(4):046114

    Article  Google Scholar 

  25. Sarkar S, Henderson JA, Robinson PA (2013) Spectral characterization of hierarchical network modularity and limits of modularity detection. PLoS One 8(1):e54383

    Article  Google Scholar 

  26. Sarkar S et al (2013) Spectral characterization of hierarchical modularity in product architectures. J Mech Des 136(1), 011006

    Article  Google Scholar 

  27. Sarkar S, Dong A, Gero JS (2009) Design optimization problem reformulation using singular value decomposition. J Mech Des 131(8), 081006

    Article  Google Scholar 

  28. Sarkar S, Dong A, Gero JS (2009) Learning symbolic formulations in design: syntax, semantics, and knowledge reification. Artif Intell Eng Des Anal Manuf 24(1):63–85

    Article  Google Scholar 

  29. Arenas A, Diaz-Guilera AA, Perez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96(11):114102

    Article  Google Scholar 

  30. Liu D, Wang H, Van Mieghem P (2010) Spectral perturbation and reconstructability of complex networks. Phys Rev E 81, 016101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somwrita Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sarkar, S. (2015). Spectral (Re)construction of Urban Street Networks: Generative Design Using Global Information from Structure. In: Gero, J., Hanna, S. (eds) Design Computing and Cognition '14. Springer, Cham. https://doi.org/10.1007/978-3-319-14956-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14956-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14955-4

  • Online ISBN: 978-3-319-14956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics