Skip to main content

Applications of ANNs in the Field of the HCPV Technology

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

High-concentrator photovoltaic (HCPV) devices are based on the use of multijunctions solar cells and optical devices. Therefore, the electrical modelling of an HCPV device presents a great level of complexity. Several artificial neural network (ANN)—based models have been developed to try to address this issue. In this chapter, a review of the developed ANN—based models developed to try to address some issues related with the field of high concentrator PV technology is reported. In addition, the results obtained from the application of some of these models to estimate the electrical parameters of an HCPV module—such as maximum power, short-circuit current, and open-circuit voltage—are presented. The results show that the ANNs are a useful tool for modelling HCPV applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luque A, Sala G, Luque-Heredia I (2006) Photovoltaic concentration at the onset of its commercial deployment. Prog Photovoltaics Res Appl 14(5):413–428

    Article  Google Scholar 

  2. Xie W, Dai Y, Wang R, Sumathy K (2011) Concentrated solar energy applications using Fresnel lenses: a review. Renew Sustain Energy Rev 15(6):2588–2606

    Article  Google Scholar 

  3. Pérez-Higueras P, Muñoz E, Almonacid G, Vidal P (2011) High concentrator photovoltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15(4):1810–1815

    Article  Google Scholar 

  4. Dimroth F, Grave M, Beutel P et al (2014) Wafer bonded four-junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7 % efficiency. Prog Photovoltaics Res Appl 22(3):277–282

    Article  Google Scholar 

  5. Ghosal K, Lilly D, Gabriel J, Whitehead M, Seel S, Fisher B, Wilson J, Burroughs S (2014) Semprius field results and progress in system development. IEEE J Photovoltaics 4(2):703–708

    Article  Google Scholar 

  6. Globaldata (2014) Concentrated photovoltaics (CPV)—global market size, competitive landscape and key country analysis to 2020. UK

    Google Scholar 

  7. Kalogirou S (2001) Application of artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5:373–401

    Article  Google Scholar 

  8. Mellit A, Kalogirou S (2008) Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Comb Sci 34:574–632

    Article  Google Scholar 

  9. Kalogirou S (2000) Application of artificial neural networks for energy systems. Appl Energy 67:17–35

    Article  Google Scholar 

  10. Hontoria L, Aguilera J, Riesco J, Zufiria P (2001) Recurrent neural supervised models for generating solar radiation. J Intell Rob Syst 31:201–221

    Article  MATH  Google Scholar 

  11. Hontoria L, Aguilera J, Zufiria P (2002) Generation of hourly irradiation synthetic series using the neural network multilayer perceptron. Sol Energy 72(5):441–446

    Article  Google Scholar 

  12. Al-Alawi S, Al-Hinai H (1998) An ANN-based approach for predicting global radiation in location with no direct measurement instrumentation. Renew Energy 14:199–204

    Article  Google Scholar 

  13. Mellit A, Benghanem M, Hadj Arab A, Guessoum A (2005) A simplified model for generating sequences of global radiation data for insolates sites: using neural network and library of Markov transition matrices. Sol Energy 79(5):468–482

    Article  Google Scholar 

  14. Mellit A, Benghanem M, Kalogirou S (2006) An adaptative wavelet-network model for forecasting daily total solar. Appl Energy 83:704–722

    Article  Google Scholar 

  15. Bahgat A, Helwa N, Ahamd G, El Shenawy E (2004) Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks. Renew Energy 29:443–457

    Article  Google Scholar 

  16. Himaya T, Katabayashi K (1997) Neural network based estimation of maximum power generation from PV module using environmental information. IEEE Trans Energy Convers 12(3):241–247

    Article  Google Scholar 

  17. Mellit A, Benghanem M, Hadj Arab A, Guessoum A (2005) An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria. Renew Energy 30(10):1501–1524

    Article  Google Scholar 

  18. Mellit A, Benghanem M, Kalogirou S (2007) Modelling and simulation of standalone photovoltaic system using an adaptative artificial neural network. Renew Energy 32(2):285–313

    Article  Google Scholar 

  19. Veerachary M, Yadaiah N (2000) ANN based peak power tracking for PV supplied motors. Sol Energy 69(4):343–350

    Article  Google Scholar 

  20. Bahgat A, Helwa N, Ahamd G, El Shenawy E (2005) Maximum power point tracking controller for PV systems using neural networks. Renew Energy 30:1257–1268

    Article  Google Scholar 

  21. Karapete E, Boztepe M, Colak M (2006) Neural network based solar cell model. Energy Convers Manag 47:1159–1178

    Article  Google Scholar 

  22. de Blas M, Torres J, Prieto E, García A (2002) Selecting a suitable model for characterizing photovoltaic devices. Renew Energy 25:371–380

    Article  Google Scholar 

  23. Almonacid F, Rus C, Hontoria L, Fuentes M, Nofuentes G (2009) Characterisation of Si-crystalline PV modules by artificial neural networks. Renew Energy 34:941–949

    Article  Google Scholar 

  24. Almonacid F, Rus C, Hontoria L, Muñoz FJ (2010) Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods. Renew Energy 35:973–980

    Article  Google Scholar 

  25. Almonacid F, Rus C, Pérez-Higueras P, Hontoria L (2011) Calculation of the energy provided by a PV generator. Comparative study: Conventional methods versus artificial neural networks. Energy 36:375–384

    Article  Google Scholar 

  26. Almonacid F, Rus C, Pérez-Higueras P, Hontoria L (2009) Estimation of the energy of a PV generator using artificial neural network. Renew Energy 34:2743–2750

    Article  Google Scholar 

  27. Coimbra CF, Kleissl J, Marquéz R (2013) Chapter 8: overview of solar-forecasting methods and a metric for accuracy evaluation. In: Solar energy forecasting and resource assessment, Elsevier, pp 172–192

    Google Scholar 

  28. Mellit A (2008) Artificial intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1(1):52–76

    Article  Google Scholar 

  29. Lopez G, Batlles F, Tovar-Pescador J (2005) Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 30:1675–1684

    Article  Google Scholar 

  30. Alam S, Kaushik S, Garg S (2006) Computation of beam solar radiation at normal incidence using artificial neural network. Renew Energy 31:1483–1491

    Article  Google Scholar 

  31. Mishra A, Kaushika N, Zhang G, Zhou J (2008) Artificial neural network model for the estimation of direct solar radiation in the Indian zone. Int J Sustain Energ 27(3):95–103

    Article  Google Scholar 

  32. Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan A (2010) An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers Manag 51:771–782

    Article  Google Scholar 

  33. Mubiru J (2011) Using artificial neural networks to predict direct solar irradiation. Advan Artif Neural Syst 2011:1–6

    Article  Google Scholar 

  34. Marquez R, Coimbra C (2011) Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 85:746–756

    Article  Google Scholar 

  35. Rodrigo J, Hontoria L, Almonacid F, Fernández E, Rodrigo P, Pérez-Higueras PJ (2012) Artificial neural networks for the generation of direct normal solar annual irradiance synthetic series. In: AIP conference proceedings of 8th international conference on concentrating photovoltaic systems: CPV-8, Toledo

    Google Scholar 

  36. Rehman S, Mohandes M (2012) Splitting global solar radiation into diffuse and direct normal fractions using artificial neural networks. Energy Sources 34(14):1326–1336

    Article  Google Scholar 

  37. Marpu EYP, Gherboudj I, Ghedira H, Taha BO, Chiesa M (2013) Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images. Sol Energy 89:1–16

    Article  Google Scholar 

  38. Chu Y, Pedro HT, Coimbra CF (2013) Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning. Sol Energy 98:592–603

    Article  Google Scholar 

  39. Fernández EF, Pérez-Higueras P, Garcia Loureiro A, Vidal P (2013) Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Prog Photovoltaics Res Appl 21(4):693–701

    Google Scholar 

  40. Fernandez EF, Almonacid F, Ruiz-Arias J, Soria-Moya A (2014) Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mater Sol Cells 127:179–187

    Article  Google Scholar 

  41. Fernández EF, Almonacid F, Rodrigo P, Pérez-Higueras P (2014) Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mater Sol Cells 121:144–151

    Article  Google Scholar 

  42. Ef Fernández, Siefer G, Almonacid F, García Loureiro AJ, Pérez-Higueras P (2013) A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations. Sol Energy 92:221–229

    Article  Google Scholar 

  43. Patra J, Maskell D (2010) Estimation of dual-junction solar cell characteristic using neural networks. In: 35th IEEE photovoltaic specialists conference, PVSC 2010, Honolulu

    Google Scholar 

  44. Patra J (2011) Neural network-based model for dual-junction solar cells. Prog Photovoltaics Res Appl 19:33–44

    Article  Google Scholar 

  45. Patra J (2011) Chebyshev neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers 26(1):132–139

    Article  Google Scholar 

  46. Patra J, Maskell D (2012) Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks. Renew Energy 44:7–16

    Article  Google Scholar 

  47. “SILVACO,” Available: http://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html

  48. Almonacid F, Fernández EF, Rodrigo P, Pérez-Higueras P, Rus-Casas C (2013) Estimating the maximum power of a high concentrator photovoltaic (HCPV) module using an artificial neural network. Energy 53:165–172

    Article  Google Scholar 

  49. Emery K, Del Cueto J, Zaaiman Z (2002) Spectral correction based on optical air mass. In: Proceeding of 29th IEEE PV specialist conference, New Orleans

    Google Scholar 

  50. Faine P, Kurtz SR, Riordan C, Olson J (1991) The influence of Spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells. Sol Cells 31:259–278

    Article  Google Scholar 

  51. Kasten F, Young A (1989) Revised optical air mass tables and approximation formula. Appl Opt 28(22):4735–4738

    Article  Google Scholar 

  52. Gueymard C (1992) Assesment of the accuracy and computing speed of simplified saturation vapour equations using a new reference dataset. J Appl Meteorol 32:294–300

    Google Scholar 

  53. Gueymard C (1994) Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Sol Energy 53(1):57–71

    Article  Google Scholar 

  54. Rigolliere C, Bauer O, Wald L (2000) On the clear sky model of the Esra—European Solar Radiation Atlas—with respect to the heliosat method. Sol Energy 68:33–38

    Article  Google Scholar 

  55. Rivera A, García-Domingo B, Del Jesus M, Aguilera J (2013) Characterization of concentrating photovoltaic modules by cooperative competitive radial basis function networks. Expert Syst Appl 40(5):1599–1608

    Article  Google Scholar 

  56. Williams S, Betts T, Helf T, Gottschalg R, Beyer H, Infield D (2003) Modeling long term module performance based on realistic reporting conditions with consideration to spectral effects. In: Proceedings of the world conference on photovoltaic energy conversion

    Google Scholar 

  57. Takashi M, Yasuhito N, Hiroaki T, Hideyuki T (2009) Uniqueness verification of solar spectrum index of average photon energy for evaluating outdoor performance of photovoltaic modules. Sol Energy 83:1294–1299

    Article  Google Scholar 

  58. Antón I, Martinez M, Rubio F, Núñez R, Herrero R, Dominguez C, Victoria M, Askins S, Sala G (2012) Power rating of CPV systems based on spectrally corrected DNI. AIP Conf Proc 1477:331–335

    Article  Google Scholar 

  59. King DL, Boyson WE, Kratochvil JA (2004) Sandia national laboratories. Photovoltaic array performance model SAND2004-3535, Albuquerque

    Google Scholar 

  60. Fernández E, Almonacid F (2014) Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications. Energy 74:941–949

    Article  Google Scholar 

  61. Rodrigo P, Fernández E, Almonacid F, Pérez-Higueras P (2014) Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38:478–488

    Article  Google Scholar 

  62. Almonacid F, Pérez-Higueras P, Fernández EF, Rodrigo P (2012) Relation between the cell temperature of a HCPV module and atmospheric parameters. Sol Energy Mater Sol Cells 105:322–327

    Article  Google Scholar 

  63. MODIS Daily Level-3 data (2013) Available: http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=MODIS_DAILY_L3. (Accessed 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Almonacid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almonacid, F., Mellit, A., Kalogirou, S.A. (2015). Applications of ANNs in the Field of the HCPV Technology. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics