Skip to main content

The High-Concentrator Photovoltaic Module

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

High-concentrator photovoltaic (HCPV) modules incorporate solar cells, optical devices, cooling mechanisms, and other elements in an assembly to provide the functions required to concentrate sunlight and obtain electricity. The variety of designs for configuring HCPV modules is introduced in this chapter. Thermal management, an important aspect to be considered in the design of these modules, is discussed, as are the possibilities and innovations for implementing cooling mechanisms. The behavior of HCPV modules is complex because of the different interdependent elements and involved processes and because of the changing operating conditions in the field. The experimental analysis of available modules has motivated progress in understanding this complex behavior. The influence of different atmospheric parameters on such behavior is analyzed in this chapter. In addition, existing models for the electrical characterization of HCPV modules are reviewed. Many of these models have been recently developed and are intended for a more accurate simulation of the behavior, for easier implementation, or for meeting specific needs of the HCPV industry. The availability of reliable models to predict the energy harvested by HCPV is important to promote this photovoltaic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEC 62108 (2007) Concentrator photovoltaic (CPV) modules and assemblies—design qualification and type approval, edn 1. Geneve

    Google Scholar 

  2. Sala G, Pachón D, Antón I (1999) Test, rating and specification of PV concentrator components and systems. C-rating project. Book1: classification of PV concentrators. Contract NNE-1999-00588

    Google Scholar 

  3. IEC 62670-1 (2013) Photovoltaic concentrators (CPV)—performance testing—part 1: standard conditions. Edition 1.0, Geneve

    Google Scholar 

  4. Pérez-Higueras PJ, Muñoz E, Almonacid G, Vidal PG (2011) High concentrator photovoltaics efficiencies: present status and forecast. Renew Sust Energy Rev 15:1810–1815

    Article  Google Scholar 

  5. Fernández Eduardo F, Siefer G, Almonacid F, Loureiro AJG, Pérez-Higueras PJ (2013) A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations. Sol Energy 92:221–229

    Article  Google Scholar 

  6. Philipps SP, Peharz G, Hoheisel R, Hornung T, Al-Abbadi NM, Dimroth F, Bett AW (2010) Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions. Sol Energy Mat Sol Cells 94:869–877

    Article  Google Scholar 

  7. Domínguez C, Antón I, Sala G (2010) Multijunction solar cell model for translating I–V characteristics as a function of irradiance, spectrum, and cell temperature. Prog Photov Res App 18:272–284

    Google Scholar 

  8. Chan NLA, Young TB, Brindley HE, Ekins-Daukes NJ, Araki K, Kemmoku YY (2013) Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Prog Photov Res App 21:1598–1610

    Article  Google Scholar 

  9. Peharz G, Ferrer Rodríguez JP, Siefer G, Bett AW (2011) Investigations on the temperature dependence of CPV modules equipped with triple-junction solar cells. Prog Photov Res App 19:54–60

    Article  Google Scholar 

  10. Peharz G, Ferrer Rodríguez JP, Siefer G, Bett AW (2011) A method for using CPV modules as temperature sensors and its application to rating procedures. Sol Energy Mater Sol Cells 95:2734–2744

    Article  Google Scholar 

  11. Fernández Eduardo F, Pérez-Higueras PJ, García Loureiro AJ, Gómez Vidal P (2013) Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Prog Photov Res Appl 21:693–701

    Google Scholar 

  12. Almonacid F, Pérez-Higueras PJ, Fernández EF, Rodrigo P (2012) Relation between the cell temperature of a HCPV module and atmospheric parameters. Sol Energy Mat Sol Cells 105:322–327

    Article  Google Scholar 

  13. Faine P, Kurtz S, Riordan C, Olson JM (1991) The influence of spectral solar irradiance variations on the performance of selected single-junction and multi-junctions solar cells. Sol Cells 31:259–278

    Article  Google Scholar 

  14. Ota Y, Nagai H, Araki K, Nishioka K (2012) Temperature distribution in 820X CPV module during outdoor operation. AIP conference proceedings 1477:364–367

    Article  Google Scholar 

  15. Fernández Eduardo F, Rodrigo P, Almonacid F, Pérez-Higueras PJ (2014) A method for estimating cell temperature at the maximum power point of a HCPV module under actual operating conditions. Sol Energy Mat Sol Cells 124:159–165

    Article  Google Scholar 

  16. Strobach E, Faiman D, Kabalo S, Bukobza D, Melnichak V, Gombert A, Gerstmaier T, Roettger M (2014) Modeling a grid-connected concentrator photovoltaic system. Prog Photov Res App. doi:10.1002/pip.2467

    Google Scholar 

  17. Helmers H, Schachtner M, Bett AW (2013) Influence of temperature and irradiance on triple-junction solar subcells. Sol Energy Mat Sol Cells 116:144–152

    Article  Google Scholar 

  18. Fernández Eduardo F, Siefer G, Schachtner M, García-Loureiro AJ, Pérez-Higueras PJ (2012) Temperature coefficients of monolithic III–V triple-junction solar cells under different spectra and irradiance levels. AIP Conf Proc 1477:189–193

    Article  Google Scholar 

  19. Siefer G, Bett AW (2014) Analysis of temperature coefficients for III–V multijunction concentrator cells. Prog Photov Res App 22:515–524

    Article  Google Scholar 

  20. Kinsey GS, Edmondson KM (2009) Spectral response and energy output of concentrator multijunction solar cells. Prog Photov Res App 17:279–288

    Article  Google Scholar 

  21. Fernández Eduardo F, Rodrigo P, Fernández JI, Almonacid F, Pérez-Higueras PJ, García-Loureiro AJ, Almonacid G (2014) Analysis of high concentrator photovoltaic modules in outdoor conditions: influence of direct normal irradiance, air temperature, and air mass. J Renew Sust En 6:013102

    Article  Google Scholar 

  22. Fernández Eduardo F, Almonacid F, Rodrigo P, Pérez-Higueras PJ (2013) Model for prediction of the maximum power point of a high concentrator photovoltaic module. Sol Energy 97:12–18

    Article  Google Scholar 

  23. Rodrigo P, Fernández Eduardo F, Almonacid F, Pérez-Higueras PJ (2013) Models for the electrical characterization of high concentration photovoltaic cells and modules: a review. Renew Sust Ener Rev 26:752–760

    Article  Google Scholar 

  24. McMahon WE, Emery KE, Friedman DJ, Ottoson L, Young MS, Ward JS, Kramer CM, Duda A, Kurtz S (2008) Fill factor as a probe of current-matching for GaInP/GaAs tandem cells in a concentrator system during outdoor operation. Prog Photov Res App 16:213–224

    Article  Google Scholar 

  25. Aronova ES, Grilikhes VA, Shvarts MZ, Timoshi NH (2008) On the estimation of hourly power output of solar photovoltaic installations with MJ SCs and sunlight concentrators. In: 33rd IEEE photovoltaic specialists conference

    Google Scholar 

  26. Fernández Eduardo F, Almonacid F, Ruiz-Arias JA, Soria-Moya A (2014) Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mat Sol Cells 127:179–187

    Article  Google Scholar 

  27. Chan NLA, Brindley HE, Ekins-Daukes NJ (2014) Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy. Prog Photov Res App 22:1080–1095

    Article  Google Scholar 

  28. Hornung T, Steiner M, Nitz P (2012) Estimation of the influence of fresnel lens temperature on energy generation of a concentrator photovoltaic system. Sol Energy Mat Sol Cells 99:333–338

    Article  Google Scholar 

  29. Araki K, Kemmoku Y, Yamaguchi M (2008) A simple rating method for CPV modules and systems. In: 33rd IEEE photovoltaic specialists conference

    Google Scholar 

  30. García-Domingo B, Aguilera J, de la Casa J, Fuentes M (2014) Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (concentrated photovoltaic) module. Energy 70:239–250

    Article  Google Scholar 

  31. Kurtz S, Muller M, Jordan D, Ghosal K, Fisher B, Verlinden P, Hashimoto J, Riley D (2014) Key parameters in determining energy generated by CPV modules. Prog Photov Res App. doi:10.1002/pip.2544

    Google Scholar 

  32. Fernández Eduardo F, Almonacid F, Rodrigo P, Pérez-Higueras PJ (2014) Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mat Sol Cells 121:144–151

    Article  Google Scholar 

  33. Baig H, Heasman KC, Mallick TK (2012) Non-uniform illumination in concentrating solar cells. Renew Sustain Energy Rev 16:5890–5909

    Article  Google Scholar 

  34. Mills A (1999) Basic heat and mass transfer. Prentice Hall, New Jersey

    Google Scholar 

  35. Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 86:451–483

    Article  Google Scholar 

  36. Cotal H, Frost J (2010) Heat transfer modeling of concentrator multijunction solar cell assemblies using finite difference techniques. In: IEEE photovoltaic specialists conference pp 213–218

    Google Scholar 

  37. Micheli L, Sarmah N, Luo X, Reddy KS, Mallick TK, Tapas M (2014) Design of a 16-cell densely-packed receiver for high concentrating photovoltaic applications. Energy Procedia (in press)

    Google Scholar 

  38. King J (1988) Material handbook for hybrid microelectronics. Artech House Publishers, Massachusetts

    Google Scholar 

  39. Kulkarni DP, Das DK (2005) Analytical and numerical studies on microscale heat sinks for electronic applications. Appl Therm Eng 25:2432–2449

    Article  Google Scholar 

  40. Tseng YS, Fu HH, Hung TC, Pei BS (2007) An optimal parametric design to improve chip cooling. Appl Therm Eng 27:1823–1831

    Article  Google Scholar 

  41. Mittelman G, Dayan A, Dado-Turjeman K, Ullmann A (2007) Laminar free convection underneath a downward facing inclined hot fin array. Int J Heat Mass Transf 50:2582–2589

    Article  MATH  Google Scholar 

  42. Do KH, Kim TH, Han YS, Choi BI, Kim MB (2012) General correlation of a natural convective heat sink with plate-fins for high concentrating photovoltaic module cooling. Sol Energy 86:2725–2734

    Article  Google Scholar 

  43. Bar-Cohen A, Iyengar M, Kraus AD (2003) Design of optimum plate-fin natural convective heat sinks. J Electron Packag 125:208

    Article  Google Scholar 

  44. Natarajan SK, Mallick TK, Katz M, Weingaertner S (2011) Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements. Int J Therm Sci 50:2514–2521

    Article  Google Scholar 

  45. Royne A, Dey CJ (2007) Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol Energy 81:1014–1024

    Article  Google Scholar 

  46. Zhu L, Boehm RF, Wang Y, Halford C, Sun Y (2011) Water immersion cooling of PV cells in a high concentration system. Sol Energy Mater Sol Cells 95:538–545

    Article  Google Scholar 

  47. Anderson W, Tamanna S, Sarraf D, Dussinger P, Hoffman R (2008) Heat pipe cooling of concentrating photovoltaic (CPV) systems. In: IEEE international energy conversation engineering conferences, p 1

    Google Scholar 

  48. Van Sark WGJHM (2011) Feasibility of photovoltaic—thermoelectric hybrid modules. Appl Energy 88:2785–2790

    Article  Google Scholar 

  49. Valeh-e-Sheyda P, Rahimi M, Karimi E, Asadi M (2013) Application of two-phase flow for cooling of hybrid microchannel PV cells: a comparative study. Energy Convers Manag 69:122–130

    Article  Google Scholar 

  50. Karathanassis IK, Papanicolaou E, Belessiotis V, Bergeles GC (2013) Multi-objective design optimization of a micro heat sink for concentrating photovoltaic/thermal (CPVT) systems using a genetic algorithm. Appl Therm Eng 59:733–744

    Article  Google Scholar 

  51. Wong KV, De Leon O (2010) Applications of nanofluids: current and future. Adv Mech Eng 2010:1–11

    Google Scholar 

  52. Al-Shamani AN, Yazdi MH, Alghoul MA, Abed AM, Ruslan MH, Mat S et al (2014) Nanofluids for improved efficiency in cooling solar collectors—a review. Renew Sustain Energy Rev 38:348–367

    Article  Google Scholar 

  53. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W et al (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:011301

    Article  Google Scholar 

  54. Micheli L, Sarmah N, Luo X, Reddy KS, Mallick TK (2013) Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: a review. Renew Sustain Energy Rev 20:595–610

    Article  Google Scholar 

  55. Barrau J, Perona A, Dollet A, Rosell J (2014) Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol Energy 107:113–121

    Google Scholar 

  56. Barrau J, Rosell J, Chemisana D, Tadrist L, Ibañez M (2011) Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol Energy 85:2655–2665

    Article  Google Scholar 

  57. Sung MK, Mudawar I (2008) Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module. Int J Heat Mass Transf 51:3825–3839

    Article  MATH  Google Scholar 

  58. Kribus A, Kaftori D, Mittelman G, Hirshfeld A, Flitsanov Y, Dayan A (2006) A miniature concentrating photovoltaic and thermal system. Energy Convers Manag 47:3582–3590

    Article  Google Scholar 

  59. Mittelman G, Kribus A, Dayan A (2007) Solar cooling with concentrating photovoltaic/thermal (CPVT) systems. Energy Convers Manag 48:2481–2490

    Article  Google Scholar 

  60. ASTM E 2527 (2009) Standard test method for electrical performance of concentrator terrestrial photovoltaic modules and systems under natural sunlight. American Society for Testing and Materials

    Google Scholar 

  61. King DL, Boyson WE, Kratochvil JA (2004) Photovoltaic array performance model. Sandia National Laboratories, SAND2004-3535

    Google Scholar 

  62. Peharz G, Siefer G, Bett AW (2009) A simple method for quantifying spectral impacts on multi-junction solar cells. Sol Energy 83:1588–1598

    Article  Google Scholar 

  63. Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154

    Article  Google Scholar 

  64. Almonacid F, Fernández EF, Pérez-Higueras PJ, Rodrigo P, Rus-Casas C (2013) Estimating the maximum power of a high concentrator photovoltaic (HCPV) module using an artificial neural network. Energy 53:165–172

    Article  Google Scholar 

  65. Steiner M, Siefer G, Hornung T, Peharz G, Bett AW (2014) YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules. Prog Photov Res Appl. doi:10.1002/pip.2458

    Google Scholar 

  66. Fernández Eduardo F, Almonacid F, Mallick TK, Pérez-Higueras PJ (2014) Analytical modelling of high concentrator photovoltaic modules based on atmospheric parameters. Int J Photoenergy (in press)

    Google Scholar 

  67. Fernández Eduardo F, Almonacid F, Sarmah N, Mallick T, Sánchez I, Cuadra JM, Soria-Moya A, Pérez-Higueras PJ (2014) Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions. AIP Conf Proc 1616:187

    Article  Google Scholar 

  68. Rodrigo P, Fernández Eduardo F, Almonacid F, Pérez-Higueras PJ (2014) Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38:478–488

    Article  Google Scholar 

  69. Castro M, Domínguez C, Núñez R, Antón I, Sala G, Araki K (2013) Detailed effects of wind on the field performance of a 50 kW CPV demonstration plant. AIP Conf Proc 1556:256–260

    Article  Google Scholar 

  70. Rubio F, Martínez M, Coronado R, Pachón JL, Banda P (2008) Developing CPV power plants—ISFOC experiences. In: IEEE photovoltaic specialists conference, pp 1–4

    Google Scholar 

  71. Yandt MD, Wheeldon JF, Cook J, Beal R, Walker AW, Thériault O et al (2012) Estimating cell temperature in a concentrating photovoltaic system. AIP Conf Proc 1477:172–175

    Article  Google Scholar 

  72. IEC 60904-5 (2011) Photovoltaic devices—part 5: determination of the equivalent cell temperature (ECT) of photovoltaic (PV) devices by the open-circuit voltage method

    Google Scholar 

  73. Wang YN, Lin TT, Leong JC, Hsu YT, Yeh CP, Lee PH et al (2013) Numerical investigation of high-concentration photovoltaic module heat dissipation. Renew Energy 50:20–26

    Article  Google Scholar 

  74. Steiner M, Siefer G, Bett AW (2012) An investigation of solar cell interconnection schemes within CPV modules using a validated temperature-dependent SPICE network model. Prog Photov Res App 22:505–514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rodrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigo, P., Micheli, L., Almonacid, F. (2015). The High-Concentrator Photovoltaic Module. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics