Skip to main content

Structural Dynamic Modeling: Tales of Sin and Redemption

  • Conference paper
Special Topics in Structural Dynamics, Volume 6

Abstract

The great twentieth century mathematician, John von Neumann, once said, “At a great distance from its empirical source, or after much abstract inbreeding, a mathematical subject is in danger of degeneration. Whenever this stage is reached the only remedy seems to me to be the rejuvenating return to the source: the reinjection of more or less empirical ideas.” This wisdom is especially applicable to the field of structural dynamics. The present paper takes a look at the historical and empirical bases of key aspects of structural dynamic phenomena including damping of materials and built-up assemblies, behavior of viscoelastic materials, interaction of structures and fluids, and general parametric uncertainties. Migration of misconceptions in engineering practice and, in particular, commercial software products are cited. Illustrative examples of the benefits of recollection of fundamentals in aerospace, marine and civil applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Timoshenko S (1983) History of strength of materials. Dover Publications, New York

    Google Scholar 

  2. Zienkiewicz O, Taylor R, Zhou J (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, Boston

    Google Scholar 

  3. Joshi A (2004) CAE data management using traditional PDM systems. In: 24th computers and information in engineering conference, ASME

    Google Scholar 

  4. Piersol A, Paez T (2010) Harris’ shock and vibration handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  5. Rayleigh JWS (1945) The theory of sound, 1st edn. Dover Publications, New York

    MATH  Google Scholar 

  6. Caughey T, O’Kelly M (1965) Classical normal modes in damped linear dynamic systems. J Appl Mech 32:583–588

    Article  MathSciNet  Google Scholar 

  7. Hurty W (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685

    Article  Google Scholar 

  8. Craig R, Bampton M (1968) Coupling of substructures for dynamic analysis. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  9. MacNeal R (1971) A hybrid method of component mode synthesis. Comput Struct 1:581–601

    Article  Google Scholar 

  10. Rubin S (1975) Improved component mode representation for structural dynamic analysis. AIAA J 13(8):995–1006

    Article  MATH  Google Scholar 

  11. Benfield WA, Hruda RF (1971) Vibration analysis of structures by component mode substitution. AIAA J 9(7):1255–1261

    Article  MATH  Google Scholar 

  12. (2012) Solidworks essentials, Dassault Systemes

    Google Scholar 

  13. (2009) Abaqus CAE user’s manual, Dassault Systemes

    Google Scholar 

  14. Carrington J, Bowdon J (2008) NX6 assembly modeling update, Siemens PLM Software

    Google Scholar 

  15. Bisplinghoff R, Ashley H (1962) Principles of aeroelasticity. Wiley and Sons, New York

    MATH  Google Scholar 

  16. Rodden W (2011) Theoretical and computational aeroelasticity. Crest Publishing, Burbank

    Google Scholar 

  17. Rubin S (1970) Prevention of coupled structure propulsion system instability. NASA SP-2055, Washington, DC

    Google Scholar 

  18. Abrahamson HN (1966) The dynamic behavior of liquids in moving containers. NASA SP-106, Washington, DC

    Google Scholar 

  19. Lyon R (1975) Statistical energy analysis of dynamical systems: theory and applications. The MIT Press, Cambridge, MA

    Google Scholar 

  20. Beranek L (1971) Noise and vibration control. McGraw Hill, New York

    Google Scholar 

  21. Morison J et al (1950) The force exerted by surface waves on piles. Pet Trans 189:149–154

    Google Scholar 

  22. Kimball A, Lovell D (1927) Internal friction in solids. Phys Rev 30:705

    Article  Google Scholar 

  23. Becker E, Foppl O (1928) Dauerversuche zur Bestimmung der Festigkeitseigenschaften, Beziehungen zwischen Baustoffdampfung und Verformungeschwindigkeit. Forschungsh Ver Deutsch Ing., No. 304

    Google Scholar 

  24. Kussner H (1935) Augenblicklicher Entwicklungsstand der Frage des Flugelflatterns. Luftfahrtforsch 12(6):193–209

    Google Scholar 

  25. Kassner R (1936) Die Berucksichtigung der inneren Dampfung beim ebenen Problem der Flugelschwingung. Luftfahrtforsch 13(11):388–393

    Google Scholar 

  26. Cremer L, Heckl M, Ungar E (1973) Structure borne sound, Springer-Verlag

    Google Scholar 

  27. Wada B, DesForges D (1979) Damping effects in aerospace structures. AGARD-CP-277

    Google Scholar 

  28. Gutierrez-Lemini D (2014) Engineering viscoelasticity. Springer, New York

    Book  MATH  Google Scholar 

  29. Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  30. Iwan W (1967) On a class of models for the yielding behavior of continuous composite systems. J Appl Mech 89:612–617

    Article  Google Scholar 

  31. Genta G, Amati N (2008) On the equivalent viscous damping for systems with hysteresis. Meccanica di Solidi

    Google Scholar 

  32. Coppolino R (1976) A numerically efficient finite element hydroelastic analysis, vol 1, Theory and results. NASA CR-2662, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert N. Coppolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Coppolino, R.N. (2015). Structural Dynamic Modeling: Tales of Sin and Redemption. In: Allemang, R. (eds) Special Topics in Structural Dynamics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15048-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15048-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15047-5

  • Online ISBN: 978-3-319-15048-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics