Skip to main content

Joint Signature and Encryption in the Presence of Continual Leakage

  • Conference paper
  • First Online:
Information Security Applications (WISA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8909))

Included in the following conference series:

  • 1390 Accesses

Abstract

The goal of leakage-resilient cryptography is to build schemes secure even if the secrets are partially leaked to the adversary. As far as we know, most existing leakage-resilient cryptographic schemes are studied in the setting of single secret, e.g., signing key of signature scheme, decryption key of encryption scheme. In this paper, we study the case of double secrets, i.e., the notion of a joint signature and encryption in the presence of continual leakage, for the first time. Following the terminology of [2], we refer to this primitive as leakage-resilient signcryption. In particular, we give two instantiations of such signcryption scheme based on existing leakage resilient signature and encryption schemes.

This research is supported by the National Natural Science Foundation of China (Grant No. 60970139) and the Strategic Priority Program of Chinese Academy of Sciences (Grant No. XDA06010702).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our definition, each user has a single key pair \((\mathsf {sk}, \mathsf {pk})\) which can be used for both signing and decryption, in some other definitions, e.g., [2], the signing and decryption keys may be generated by different key-generation algorithms.

  2. 2.

    Here, we need a public hash or encoding function to map \(Y_T^{r}\) to a bit string whose length is same as the bit representation of \((m||\varSigma ||X_T)\). Then, the same function will be used in the decryption algorithm.

References

  1. Arriaga, A., Barbosa, M., Farshim, P.: On the joint security of signature and encryption schemes under randomness reuse: efficiency and security amplification. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 206–223. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Boneh, D., Brumley, D.: Remote timing attacks are practical. Comput. Netw. 48(5), 701–716 (2005)

    Article  Google Scholar 

  4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Boyen, X.: Multipurpose identity-based signcryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: CCS’10, pp. 152–161. ACM (2010)

    Google Scholar 

  12. Chen, L., Malone-Lee, J.: Improved identity-based signcryption. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Galindo, D., Vivek, S.: A practical leakage-resilient signature scheme in the generic group model. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 50–65. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Kiltz, E., Pietrzak, K.: Leakage resilient ElGamal encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Tang, F., Li, H., Niu, Q., Liang, B.: Efficient leakage-resilient signature schemes in the generic bilinear group model. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp. 418–432. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \(<<\) cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO ’97. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tang, F., Li, H. (2015). Joint Signature and Encryption in the Presence of Continual Leakage. In: Rhee, KH., Yi, J. (eds) Information Security Applications. WISA 2014. Lecture Notes in Computer Science(), vol 8909. Springer, Cham. https://doi.org/10.1007/978-3-319-15087-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15087-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15086-4

  • Online ISBN: 978-3-319-15087-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics