Skip to main content

Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them

  • Conference paper
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Effects of diffusion on the magnetic resonance (MR) signal carry a wealth of information regarding the microstructure of the medium. Characterizing such effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. There are mainly two approaches that can be used to incorporate the influence of restricted diffusion, particularly on experiments featuring general gradient waveforms . The multiple propagator framework essentially reduces the problem to a path integral , which can be evaluated analytically or approximated via a matrix representation . The multiple correlation function method tackles the Bloch–Torrey equation , and employs an alternative matrix formulation. In this work, we present the two techniques in a unified fashion and link the two approaches. We provide an explanation for why the multiple correlation function is computationally more efficient in the case of waveforms featuring piecewise constant gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the form of V (ξ(ν )) differs slightly from that in Eq. (4) due to the explicit time dependence. However, this difference doesn’t appear to violate the applicability of Kac’s theorem.

  2. 2.

    With the boundary condition that \(\mathrm{U}(0, 0) = \mathbb{I}\), where \(\mathbb{I}\) is the identity operator.

  3. 3.

    The wave vector operator, when expressed in the position basis, is a derivative, i.e., \(\langle \boldsymbol{r}\vert \mathbf{K} = -\mathrm{i}\nabla \langle \boldsymbol{r}\vert\). Its commutator with the position operator is \(\left [\mathbf{K},\mathbf{R}\right ] = -\mathrm{i}\).

  4. 4.

    Also note that for a practical implementation where the limit \(\tau \rightarrow 0\) is not actually taken, one might want to offset the argument of H by τ∕2 (like in Fig. 1) or some other amount, but we need not bother with that for our purposes.

  5. 5.

    The eigenfunction corresponding to the \(\boldsymbol{k} = 0\) eigenvalue is constant over the volume of interest: \(\langle \boldsymbol{r}\vert 0\rangle = V ^{-1/2}\). Hence \(\int \mathrm{d}\boldsymbol{r}\,\langle \boldsymbol{r}\vert \boldsymbol{k}\rangle = V ^{1/2}\int \mathrm{d}\boldsymbol{r}\,\langle 0\vert \boldsymbol{r}\rangle \langle \boldsymbol{r}\vert \boldsymbol{k}\rangle = V ^{1/2}\langle 0\vert \boldsymbol{k}\rangle = V ^{1/2}\delta _{0,\boldsymbol{k}}\). On the other hand, the initial magnetization is in equilibrium, and therefore proportional to the \(\boldsymbol{k} = 0\) eigenket, meaning \(\langle \boldsymbol{k}^{{\prime}}\vert m(0)\rangle = c\delta _{\boldsymbol{k}^{{\prime}},0}\). For convenience, we assume a normalization for \(m(\boldsymbol{r},t)\) such that \(\int \mathrm{d}\boldsymbol{r}\,m(\boldsymbol{r}, 0) = 1\), whereby c = V −1∕2.

  6. 6.

    More details can be found in [34].

References

  1. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)

    Article  Google Scholar 

  2. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008). doi:10.1002/mrm.21577. http://dx.doi.org/10.1002/mrm.21577

  3. Avram, L., Özarslan, E., Assaf, Y., Bar-Shir, A., Cohen, Y., Basser, P.J.: Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR Biomed. 21(8), 888–898 (2008). doi:10.1002/nbm.1277. http://dx.doi.org/10.1002/nbm.1277

  4. Avram, A.V., Özarslan, E., Sarlls, J.E., Basser, P.J.: In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qpfg) diffusion mri on a clinical scanner. NeuroImage 64, 229–239 (2013). doi:10.1016/j.neuroimage.2012.08.048

    Article  Google Scholar 

  5. Axelrod, S., Sen, P.N.: Nuclear magnetic resonance spin echoes for restricted diffusion in an inhomogeneous field: methods and asymptotic regimes. J. Chem. Phys. 114, 6878–6895 (2001)

    Article  Google Scholar 

  6. Bar-Shir, A., Avram, L., Özarslan, E., Basser, P.J., Cohen, Y.: The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. J. Magn. Reson. 194(2), 230–236 (2008). doi:10.1016/j.jmr.2008.07.009. http://dx.doi.org/10.1016/j.jmr.2008.07.009

  7. Barzykin, A.V.: Exact solution of the Torrey-Bloch equation for a spin echo in restricted geometries. Phys. Rev. B 58, 14171–14174 (1998)

    Article  Google Scholar 

  8. Barzykin, A.V.: Theory of spin echo in restricted geometries under a step-wise gradient pulse sequence. J. Magn. Reson. 139(2), 342–353 (1999). doi:10.1006/jmre.1999.1778. http://dx.doi.org/10.1006/jmre.1999.1778

  9. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  10. Callaghan, P.T.: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms. J. Magn. Reson. 129, 74–84 (1997)

    Article  Google Scholar 

  11. Caprihan, A., Wang, L.Z., Fukushima, E.: A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient. J. Magn. Reson. A 118, 94–102 (1996)

    Article  Google Scholar 

  12. Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)

    Article  Google Scholar 

  13. Cheng, Y., Cory, D.G.: Multiple scattering by NMR. J. Am. Chem. Soc. 121, 7935–7936 (1999)

    Article  Google Scholar 

  14. Codd, S.L., Callaghan, P.T.: Spin echo analysis of restricted diffusion under generalized gradient waveforms: planar, cylindrical, and spherical pores with wall relaxivity. J. Magn. Reson. 137, 358–372 (1999)

    Article  Google Scholar 

  15. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96, 10422–10427 (1999)

    Article  Google Scholar 

  16. Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149 (1990)

    Google Scholar 

  17. Gore, J.C., Xu, J., Colvin, D.C., Yankeelov, T.E., Parsons, E.C., Does, M.D.: Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 23(7), 745–56 (2010). doi:10.1002/nbm.1531

    Article  MATH  Google Scholar 

  18. Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)

    Article  Google Scholar 

  19. Grebenkov, D.S.: Analytical solution for restricted diffusion in circular and spherical layers under inhomogeneous magnetic fields. J. Chem. Phys. 128(13), 134702 (2008). doi:10.1063/1.2841367. http://dx.doi.org/10.1063/1.2841367

  20. Grebenkov, D.S.: Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. J. Magn. Reson. 205(2), 181–195 (2010). doi:10.1016/j.jmr.2010.04.017

    Article  Google Scholar 

  21. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37(1), 164–176 (2007). doi:10.1016/j.neuroimage.2007.03.074. http://dx.doi.org/10.1016/j.neuroimage.2007.03.074

  22. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  Google Scholar 

  23. Karlicek, R.F., Lowe, I.J.: A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients. J. Magn. Reson. 37, 75–91 (1980)

    Google Scholar 

  24. Kenkre, V.M., Fukushima, E., Sheltraw, D.: Simple solutions of the Torrey-Bloch equations in the NMR study of molecular diffusion. J. Magn. Reson. 128, 62–69 (1997)

    Article  Google Scholar 

  25. Koay, C.G., Özarslan, E.: Conceptual foundations of diffusion in magnetic resonance. Concepts Magn. Reson. Part A 42A, 116–129 (2013)

    Article  Google Scholar 

  26. Komlosh, M.E., Özarslan, E., Lizak, M.J., Horkay, F., Schram, V., Shemesh, N., Cohen, Y., Basser, P.J.: Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom. J. Magn. Reson. 208(1), 128–135 (2011). doi:10.1016/j.jmr.2010.10.014. http://dx.doi.org/10.1016/j.jmr.2010.10.014

  27. Laun, F.B.: Restricted diffusion in NMR in arbitrary inhomogeneous magnetic fields and an application to circular layers. J. Chem. Phys. 137(4), 044704 (2012). doi:10.1063/1.4736849

    Article  Google Scholar 

  28. Laun, F.B., Kuder, T.A., Wetscherek, A., Stieltjes, B., Semmler, W.: NMR-based diffusion pore imaging. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2 Pt 1), 021906 (2012)

    Article  Google Scholar 

  29. Meiboom, S., Gill, D.: Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958)

    Article  Google Scholar 

  30. Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys. Rev. B 51(21), 15074–15078 (1995)

    Article  Google Scholar 

  31. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)

    Article  Google Scholar 

  32. Özarslan, E.: Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. J. Magn. Reson. 199(1), 56–67 (2009). doi:10.1016/j.jmr.2009.04.002. http://dx.doi.org/10.1016/j.jmr.2009.04.002

  33. Özarslan, E., Basser, P.J.: MR diffusion - “diffraction” phenomenon in multi-pulse-field-gradient experiments. J. Magn. Reson. 188(2), 285–294 (2007). doi:10.1016/j.jmr.2007.08.002. http://dx.doi.org/10.1016/j.jmr.2007.08.002

  34. Özarslan, E., Basser, P.J.: Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. J. Chem. Phys. 128(15), 154511 (2008). doi:10.1063/1.2905765. http://dx.doi.org/10.1063/1.2905765

  35. Özarslan, E., Basser, P.J., Shepherd, T.M., Thelwall, P.E., Vemuri, B.C., Blackband, S.J.: Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J. Magn. Reson. 183(2), 315–323 (2006). doi:10.1016/j.jmr.2006.08.009. http://dx.doi.org/10.1016/j.jmr.2006.08.009

  36. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3), 1086–1103 (2006). doi:10.1016/j.neuroimage.2006.01.024. http://dx.doi.org/10.1016/j.neuroimage.2006.01.024

  37. Özarslan, E., Nevo, U., Basser, P.J.: Anisotropy induced by macroscopic boundaries: surface-normal mapping using diffusion-weighted imaging. Biophys. J. 94(7), 2809–2818 (2008). doi:10.1529/biophysj.107.124081. http://dx.doi.org/10.1529/biophysj.107.124081

  38. Özarslan, E., Shemesh, N., Basser, P.J.: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments. J. Chem. Phys. 130(10), 104702 (2009). doi:10.1063/1.3082078. http://dx.doi.org/10.1063/1.3082078

  39. Özarslan, E., Komlosh, M., Lizak, M., Horkay, F., Basser, P.: Double pulsed field gradient (double-PFG) MR imaging (MRI) as a means to measure the size of plant cells. Magn. Reson. Chem. 49, S79–S84 (2011). doi:10.1002/mrc.2797. http://dx.doi.org/10.1002/mrc.2797

  40. Özarslan, E., Shemesh, N., Koay, C.G., Cohen, Y., Basser, P.J.: Nuclear magnetic resonance characterization of general compartment size distributions. New J. Phys. 13, 15010 (2011). doi:10.1088/1367-2630/13/1/015010. http://dx.doi.org/10.1088/1367-2630/13/1/015010

  41. Özarslan, E., Shepherd, T.M., Koay, C.G., Blackband, S.J., Basser, P.J.: Temporal scaling characteristics of diffusion as a new MRI contrast: findings in rat hippocampus. NeuroImage 60(2), 1380–1393 (2012). doi:10.1016/j.neuroimage.2012.01.105. http://dx.doi.org/10.1016/j.neuroimage.2012.01.105

  42. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013). doi:10.1016/j.neuroimage.2013.04.016. http://dx.doi.org/10.1016/j.neuroimage.2013.04.016

  43. Robertson, B.: Spin-echo decay of spins diffusing in a bounded region. Phys. Rev. 151, 273–277 (1966)

    Article  Google Scholar 

  44. Sen, P.N., André, A., Axelrod, S.: Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry. J. Chem. Phys. 111, 6548–6555 (1999)

    Article  Google Scholar 

  45. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Article  Google Scholar 

  46. Stepišnik, J.: Analysis of NMR self-diffusion measurements by a density matrix calculation. Physica B & C 104, 350–364 (1981)

    Article  Google Scholar 

  47. Sukstanskii, A.L., Yablonskiy, D.A.: Effects of restricted diffusion on MR signal formation. J. Magn. Reson. 157(1), 92–105 (2002)

    Article  Google Scholar 

  48. Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563–565 (1956)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by TÜBİTAK-EU Co-funded Brain Circulation Scheme (project number 114C015) and Boğaziçi University (project number 8521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Özarslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yolcu, C., Özarslan, E. (2015). Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Function Framework, Path Integrals, and Parallels Between Them. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_1

Download citation

Publish with us

Policies and ethics