Skip to main content

Relating Backbone Curves to the Forced Responses of Nonlinear Systems

  • Conference paper
Nonlinear Dynamics, Volume 1

Abstract

Backbone curves describe the steady-state responses of unforced, undamped systems, therefore they do not directly relate to any specific forcing and damping configuration. Nevertheless, they can be used to understand the underlying dynamics of nonlinear systems subjected to forcing and damping. Building on this concept, in this paper we describe an analytical technique used to predict the onset of internally-resonant modal interactions in an example system. In conjunction with backbone curve analysis, which can be used to predict the possibility of internally-resonant behaviour, this approach provides an analytical tool for understanding and quantifying internally-resonant regions in the forced responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill TL, Cammarano A, Neild SA, Wagg DJ (2015) Out-of-unison resonance in weakly nonlinear coupled oscillators. Proc R Soc A, p 471

    Google Scholar 

  2. Cammarano A, Neild SA, Burrow SG, Wagg DJ, Inman DJ (2014) Optimum resistive loads for vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. J Intell Mater Syst Struct 25:1757–1770

    Article  MATH  Google Scholar 

  3. Lewandowski R (1996) On beams membranes and plates vibration backbone curves in cases of internal resonance. Meccanica 31:323–346

    Article  MATH  MathSciNet  Google Scholar 

  4. Marsico MR, Tzanov V, Wagg DJ, Neild SA, Krauskopf B (2011) Bifurcation analysis of a parametrically excited inclined cable close to two-to-one internal resonance. J Sound Vib 330:6023–6035

    Article  Google Scholar 

  5. Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric resonance in mechanical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Kerschen G, Peeters M, Golinval JC, Vakakis AF (2009) Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech Syst Signal Process 23:170–194

    Article  MATH  Google Scholar 

  8. Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval JC (2009) Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process 23:195–216

    Article  Google Scholar 

  9. Murdock J (2002) Normal forms and unfoldings for local dynamical systems. Springer, New York

    Google Scholar 

  10. Neild SA (2012) Approximate methods for analysing nonlinear structures. In: Wagg DJ, Virgin L (eds) Exploiting nonlinear behavior in structural dynamics. CISM courses and lectures, vol 536. Springer, Vienna, pp 53–109

    Chapter  Google Scholar 

  11. Cammarano A, Hill TL, Neild SA, Wagg DJ (2014) Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn 77:311–320

    Article  MathSciNet  Google Scholar 

  12. Neild SA, Wagg DJ (2011) Applying the method of normal forms to second-order nonlinear vibration problems. Proc R Soc A 467:1141–1163

    Article  MathSciNet  Google Scholar 

  13. Xin ZF, Neild SA, Wagg DJ, Zuo ZX (2013) Resonant response functions for nonlinear oscillators with polynomial type nonlinearities. J Sound Vib 332:1777–1788

    Article  Google Scholar 

  14. Doedel EJ, with major contributions from Champneys AR, Fairgrieve TF, Kuznetsov YuA, Dercole F, Oldeman BE, Paffenroth RC, Sandstede B, Wang XJ, Zhang C (2008) AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal. http://cmvl.cs.concordia.ca

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J. (2016). Relating Backbone Curves to the Forced Responses of Nonlinear Systems. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15221-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15221-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15220-2

  • Online ISBN: 978-3-319-15221-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics