Skip to main content

Metal Oxides and Related Nanostructures

  • Chapter
  • First Online:
Modeling of Nanotoxicity

Abstract

Metal oxides, sulfides, and other related nanostructures are another major class of nanomaterials that play a very important role in many areas of chemistry, physics, and materials science [1] . The metal elements are able to form a large diversity of oxide, sulfide, and other compound nanostructures [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez JA, Fernandez-Garcia ME (2007) Synthesis, properties and applications of oxide nanoparticles. Wiley, New Jersey

    Book  Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  4. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  5. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  Google Scholar 

  6. Wu J, Walukiewicz W, Shan W, Bourret-Courchesne E, Ager JW et al (2004) Structure-dependent hydrostatic deformation potentials of individual single-walled carbon nanotubes. Phys Rev Lett 93(1):4

    Google Scholar 

  7. Lee JS, Joung HA, Kim MG, Park CB (2012) Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6(4):2978–2983

    Article  Google Scholar 

  8. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  Google Scholar 

  9. Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON et al (2014) Cicer alpha-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438

    Article  Google Scholar 

  10. Cha CY, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897

    Article  Google Scholar 

  11. Karwowska E, Kostecki M, Sokołowska A, Chodun R, Zdunek K (2014) Peculiar role of the metallic states on the nano-MoS2 ceramic particle surface in antimicrobial and antifungal activity. Int J Appl Ceram Technol n/a–n/a

    Google Scholar 

  12. Wang L, Wang Y, Wong JI, Palacios T, Kong J et al (2014) Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6):1101–1105

    Article  Google Scholar 

  13. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13)

    Google Scholar 

  14. Wang S, Li K, Chen Y, Chen H, Ma M et al (2015) Biocompatible pegylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 39:206–217

    Article  Google Scholar 

  15. Jovanovic B (2015) Review of titanium dioxide nanoparticle phototoxicity: developing a phototoxicity ratio to correct the endpoint values of toxicity tests. Environ Toxicol Chem 34(5):1070–1077

    Article  MathSciNet  Google Scholar 

  16. Jovanovic B (2015) Critical review of public health regulations of titanium dioxide, a human food additive. Integr Environ Assess Manag 11(1):10–20

    Article  Google Scholar 

  17. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  Google Scholar 

  18. Wang J, Zhou G, Chen C, Yu H, Wang T et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185

    Article  Google Scholar 

  19. George I, Naudin G, Boland S, Mornet S, Contremoulins V et al (2015) Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. Nanoscale 7(10):4529–4544

    Article  Google Scholar 

  20. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  21. Andersson PO, Lejon C, Ekstrand-Hammarstrom B, Akfur C, Ahlinder L et al (2011) Polymorph- and size-dependent uptake and toxicity of Tio2 nanoparticles in living lung epithelial cells. Small 7(4):514–523

    Article  Google Scholar 

  22. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (Tio2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  Google Scholar 

  23. Kumar S, Huang C, Zheng G, Bohm E, Bhatele A et al (2008) Scalable molecular dynamics with namd on the ibm blue gene/L system. IBM J Res Dev 52(1–2):177–188

    Article  Google Scholar 

  24. Gong XJ, Li JY, Lu HJ, Wan RZ, Li JC et al (2007) A charge-driven molecular water pump. Nat Nanotechnol 2:709–712

    Article  Google Scholar 

  25. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  Google Scholar 

  26. Tu YS, Xiu P, Wan RZ, Hu J, Zhou RH et al (2009) Water-mediated signal multiplication with y-shaped carbon nanotubes. Proc Natl Acad Sci USA 106:18120–18124

    Article  Google Scholar 

  27. Li JY, Gong XJ, Lu HJ, Li D, Fang HP et al (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci USA 104:3687–3692

    Article  Google Scholar 

  28. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG (2008) Hydrophobicity of protein surfaces: Separating geometry from chemistry. Proc Natl Acad Sci USA 105:2274–2279

    Article  Google Scholar 

  29. Matsui M, Akaogi M (1991) Molecular dynamics simulation of the structural and physical properties of the four polymorphs of Tio2. Mol Simul 6(4–6):239–244

    Article  Google Scholar 

  30. Koparde VN, Cummings PT (2007) Molecular dynamics study of water adsorption on Tio2 nanoparticles. J Phys Chem C 111(19):6920–6926

    Article  Google Scholar 

  31. Luan B, Huynh T, Zhou R (2015) Simplified Tio2 force fields for studies of its interaction with biomolecules. J Chem Phys 142(23):234102

    Article  Google Scholar 

  32. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415

    Article  Google Scholar 

  33. Ellingsen JE (1991) A study on the mechanism of protein adsorption to Tio2. Biomaterials 12(6):593–596

    Article  Google Scholar 

  34. Wu C, Skelton AA, Chen M, Vlcek L, Cummings PT (2012) Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on asp adsorption. Langmuir 28(5):2799–2811

    Article  Google Scholar 

  35. Allouni ZE, Gjerdet NR, Cimpan MR, Hol PJ (2015) The effect of blood protein adsorption on cellular uptake of anatase Tio2 nanoparticles. Int J Nanomed 10:687–695

    Google Scholar 

  36. Chiu TK, Kubelka J, Herbst-Irmer R, Eaton WA, Hofrichter J et al (2005) High-resolution x-ray crystal structures of the villin headpiece subdomain, an ultrafast folding protein. Proc Natl Acad Sci USA 102(21):7517–7522

    Article  Google Scholar 

  37. Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115:23323–23328

    Article  Google Scholar 

  38. Gu Z, Yang Z, Yang JR, Kang SG, Zhou R (2015) Robust denaturation capability of MoS2 nanosheet to its surface-adhesive villin headpiece: Potential molecular origin of the nanotoxicity. Sci Rep submitted

    Google Scholar 

  39. Varshney V, Patnaik SS, Muratore C, Roy AK, Voevodin AA et al (2010) Md simulations of molybdenum disulphide (MoS2): force-field parameterization and thermal transport behavior. Comput Mater Sci 48(1):101–108

    Article  Google Scholar 

  40. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  Google Scholar 

  41. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  Google Scholar 

  42. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):7

    Article  Google Scholar 

  43. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    Google Scholar 

  44. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  Google Scholar 

  45. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  Google Scholar 

  46. Gu Z, Yang Z, Wang L, Zhou H, Jimenez-Cruz CA et al (2015) The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci Rep 5:10873

    Article  Google Scholar 

  47. Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455

    Article  Google Scholar 

  48. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  Google Scholar 

  49. Yu L, Lu Y, Man N, Yu SH, Wen LP (2009) Rare earth oxide nanocrystals induce autophagy in hela cells. Small 5(24):2784–2787

    Article  Google Scholar 

  50. Zhang Y, Yu C, Huang G, Wang C, Wen L (2010) Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomed 5:601–609

    Article  Google Scholar 

  51. Zhang Y, Zheng F, Yang T, Zhou W, Liu Y et al (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11(9):817–826

    Article  Google Scholar 

  52. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64

    Article  Google Scholar 

  53. Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95

    Article  Google Scholar 

  54. Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and presentation. Nat Rev Immunol 8(8):607–618

    Article  Google Scholar 

  55. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5(7):505–517

    Article  Google Scholar 

  56. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293

    Article  Google Scholar 

  57. Li H, Li Y, Jiao J, Hu HM (2011) Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 6(10):645–650

    Article  Google Scholar 

  58. Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874

    Article  Google Scholar 

  59. Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294

    Article  Google Scholar 

  60. Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  Google Scholar 

  61. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  Google Scholar 

  62. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhong Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, R. (2015). Metal Oxides and Related Nanostructures. In: Modeling of Nanotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-319-15382-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15382-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15381-0

  • Online ISBN: 978-3-319-15382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics