Skip to main content

Oxygen Redox Catalyst for Rechargeable Lithium-Air Battery

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

  • 6852 Accesses

Abstract

Non-aqueous electrolyte Li-air batteries are unique in that the oxygen reduction reaction (ORR) products (Li2O2 and Li2O) are insoluble in liquid electrolyte and the ultimate ORR product (Li2O) is electrochemically irreversible. In order to make the Li-air batteries rechargeable with high specific capacity, it is required that the ORR must be strictly selective towards the two-electron reduction so as to form the reversible Li2O2, and that both the catalyst and air electrode are very porous to maximally accommodate the ORR products for high specific capacity. The knowledge learnt from aqueous electrolyte metal-air batteries and fuel cells can be shared to develop the ORR catalyst of the non-aqueous electrolyte Li-air batteries. In this chapter, the ORR in non-aqueous Li-ionic electrolyte is discussed in comparison with those occurring in the aqueous electrolytes. Recent advances and status in study of the electrocatalysts for non-aqueous electrolyte Li-air batteries are reviewed and discussed. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113:20127–20134

    Article  Google Scholar 

  2. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186

    Article  Google Scholar 

  3. Yeager E (1984) Electrocatalysts for O2 reduction. Electrichem Acta 29:1527–1537

    Article  Google Scholar 

  4. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25

    Article  Google Scholar 

  5. Wang B (2005) Recent development of non − platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  Google Scholar 

  6. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  Google Scholar 

  7. Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187:39–48

    Article  Google Scholar 

  8. Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195:1271–1528

    Article  Google Scholar 

  9. Garten VA, Weiss PE (1955) Quinone − hydroquinone character of activated carbon and carbon black. Austral J Chem 8:68–95

    Article  Google Scholar 

  10. Taylor RJ, Humffray AA (1975) Electrochemical studies on glassy carbon electrodes. J Electroanal Chem 64:63–84

    Article  Google Scholar 

  11. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Liedtke B, Kozinsky R, Ahmed J, Kojic A, Ahmed J (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    Article  Google Scholar 

  12. Shao Y, Park S, Xiao J, Zhang JG, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal 2:844–857

    Article  Google Scholar 

  13. Imanishi N, Yamamoto O (2014) Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 17:24–30

    Article  Google Scholar 

  14. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786

    Article  Google Scholar 

  15. Kicinski W, Szala M, Bystrzejewski M (2014) Sulfur-doped porous carbons: synthesis and applications. Carbon 68:1–32

    Article  Google Scholar 

  16. Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110

    Article  Google Scholar 

  17. Li Y, Wang J, Li X, Geng D, Banis MN, Tang Y, Wang D, Li R, Sham TK, Sun X (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174

    Article  Google Scholar 

  18. Choi CH, Park SH, Woo SI (2012) Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6(8):7084–7091

    Article  Google Scholar 

  19. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51:11496–11500

    Article  Google Scholar 

  20. Xu J, Dong G, Jin C, Huang M, Guan L (2013) Sulfur and nitrogen codoped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen. ChemSusChem 6:493–499

    Article  Google Scholar 

  21. Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S (2013) Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale 5(8):3283–3288

    Article  Google Scholar 

  22. Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393

    Article  Google Scholar 

  23. Crisostomo VMB, Ngala JK, Alia S, Dobley A, Morein C, Chen CH, Shen X, Suib SL (2007) New synthetic route, characterization, and electrocatalytic activity of nanosized manganite. Chem Mater 19(7):1832–1839

    Article  Google Scholar 

  24. Cheng H, Scott K (2010) Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries. J Power Sources 195(5):1370–1374

    Article  Google Scholar 

  25. Benbow EM, Kelly SP, Zhao L, Reutenauer JW, Suib SL (2011) Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J Phys Chem C 115(44):22009–22017

    Article  Google Scholar 

  26. Minowa H, Hayashi M, Hayashi K, Kobayashi R, Takahashi K (2013) Mn-Fe-based oxide electrocatalysts for air electrodes of lithium–air batteries. J Power Sources 244:17–22

    Article  Google Scholar 

  27. Zhang Z, Zhou G, Chen W, Lai Y, Li J (2014) Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. ECS Electrochem Lett 3(1):A8–A10

    Article  Google Scholar 

  28. Debart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182

    Article  Google Scholar 

  29. Yang Y, Sun Q, Li YS, Hong H, Fu ZW (2013) A CoOx/carbon double-layer thin film air electrode for nonaqueous Li-air batteries. J Power Sources 223:312–318

    Article  Google Scholar 

  30. Zhao G, Zhang L, Pan T, Kening K (2013) Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li-O2 batteries. J Solid State Electrochem 17(6):1759–1764

    Article  Google Scholar 

  31. Liu WM, Gao TT, Yang Y, Sun Q, Fu ZW (2013) A hierarchical three-dimensional NiCo2O4 nanowire array/carbon cloth as an air electrode for nonaqueous Li-air batteries. Phys Chem Chem Phys 15(38):15806–15810

    Article  Google Scholar 

  32. Lim SH, Kim DH, Byun JY, Kim BK, Yoon WY (2013) Electrochemical and catalytic properties of V2O5/Al2O3inrechargeable Li-O2 batteries. Electrochim Acta 107:681–685

    Article  Google Scholar 

  33. Sun B, Munroe P, Wang G (2013) Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rept 3:2247. doi:10.1038/srep02247

    Google Scholar 

  34. Mao L, Zhang D, Sotomura T, Nakatsuc K, Koshiba N, Ohsaka T (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021

    Article  Google Scholar 

  35. Giordani V, Freunberger SA, Bruce PG, Tarascona JM, Larcher D (2010) H2O2 decomposition reaction as selecting tool for catalysts in Li-O2 Cells. Electrochem Solid-State Lett 13(12):A180–A183

    Article  Google Scholar 

  36. Suntivich J, Shao-Horn Y (2013) Trend in oxygen reduction reaction on transition metal oxide surfaces. ECS Trans 58:715–726

    Article  Google Scholar 

  37. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 34(6061):1383–1385

    Article  Google Scholar 

  38. Fu ZH, Lin XJ, Huang T, Yu AS (2012) Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J Solid State Electrochem 16:1447–1452

    Article  Google Scholar 

  39. Yang W, Salim J, Li S, Sun C, Chen L, Goodenough JB, Kim Y (2012) Perovskite Sr0.95Ce0.05CoO3–δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J Mater Chem 22:18902–18907

    Article  Google Scholar 

  40. Xu JJ, Xu D, Wang ZL, Wang HG, Zhang LL, Zhang XB (2013) Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew Chem Int Ed 52:3887–3890

    Article  Google Scholar 

  41. Xu JJ, Wang ZL, Xu D, Meng FZ, Zhang XB (2014) 3D Ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance. Energy Environ Sci 7:2213–2219

    Article  Google Scholar 

  42. Zhao Y, Xu L, Mai L, Han C, An Q, Xu X, Liu X, Zhang Q (2012) Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. PNAS 109:19569–19574

    Article  Google Scholar 

  43. Li F, Ohnishi R, Yamada Y, Kubota J, Domen K, Yamada A, Zhou HS (2013) Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries. Chem Commun 49:1175–1177

    Article  Google Scholar 

  44. Shui J, Karan NK, Balasubramanian M, Li S, Liu DJ (2012) Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J Am Chem Soc 134:16654–16661

    Article  Google Scholar 

  45. Dong SM, Chen X, Zhang KJ, Gu L, Zhang LX, Zhou XH, Li LF, Liu ZH, Han PX, Xu HX, Yao JH, Zhang CJ, Zhang XY, Shang CQ, Cui GL, Chen LQ (2011) Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Chem Commun 47:11291–11293

    Article  Google Scholar 

  46. Reeve RW, Christensen PA, Hamnett A, Haydock SA, Roy SC (1998) Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J Electrochem Soc 145:3463–3471

    Article  Google Scholar 

  47. Jahnke H, Schonborn M, Zimmermann G (1976) Organic dye stuffs as catalysts for fuel cells. Top Cur Chem 61:133–181

    Article  Google Scholar 

  48. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5

    Article  Google Scholar 

  49. Trahan MJ, Jia Q, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2013) Cobalt phthalocyanine catalyzed lithium-air batteries. J Electrochem Soc 160(9):A1577–A1586

    Article  Google Scholar 

  50. Ren XM, Zhang SS, Tran D, Read J (2011) Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J Mater Chem 21(27):10118–10125

    Article  Google Scholar 

  51. Zhang SS, Ren XM, Read J (2011) Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochim Acta 56(12):4544–4548

    Article  Google Scholar 

  52. Lee HK, Shim JP, Shim MJ, Kim SW, Lee JS (1996) Oxygen reduction behavior with silver alloy catalyst in alkaline media. Mater Chem Phys 45:238–242

    Article  Google Scholar 

  53. Wu CY, Wu PW, Lin P, Li YY, Lin YM (2007) Silvercarbon nanocapsule electrocatalyst for oxygen reduction reaction. J Electrochem Soc 154:B1059–B1062

    Article  Google Scholar 

  54. Marschilok AC, Zhu SL, Milleville CC, Lee SH, Takeuchi ES, Takeuchi KJ (2011) Electrodes for nonaqueous oxygen reduction based upon conductive polymer-silver composites. J Electrochem Soc 158(3):A223–A226

    Article  Google Scholar 

  55. Lu YC, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133:19048–19051

    Article  Google Scholar 

  56. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid State Lett 13(6):A69–A72

    Article  Google Scholar 

  57. Lu YC, Gasteiger HA, Crumlin E, McGuire R, Shao-Horn Y (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025

    Article  Google Scholar 

  58. Lu YC, Xu ZC, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132(35):12170–12171

    Article  Google Scholar 

  59. Xu JJ, Wang ZL, Xu D, Zhang LL, Zhang XB (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat Commun 4:2438. doi:10.1038/ncomms3438

    Google Scholar 

  60. Zheng D, Lee HS, Yang ZQ, Qu D (2013) Electrochemical oxidation of solid Li2O2 in non-aqueous electrolyte using peroxide complexing additives for lithium-air batteries. Electrochem Commun 28:17–19

    Article  Google Scholar 

  61. Li C, Fontaine O, Freunberger SA, Johnson L, Grugeon S, Laruelle S, Bruce PG, Armand M (2014) Aprotic Li-O2 battery: influence of complexing agents on oxygen reduction in an aprotic solvent. J Phys Chem C 118:3393–3401

    Article  Google Scholar 

  62. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li-O2 battery using a redox mediator. Nat Chem 5:489–494

    Article  Google Scholar 

  63. Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochim Acta 55(22):6376–6382

    Article  Google Scholar 

  64. Valarselvan S, Manisankar P (2011) Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media. Electrochim Acta 56(20):6945–6953

    Article  Google Scholar 

  65. Wang A, Bonakdarpour A, Wilkinson DP, Gyenge E (2012) Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide. Electrochim Acta 66:222–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Shui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, S.S., Zhang, Z. (2015). Oxygen Redox Catalyst for Rechargeable Lithium-Air Battery. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics