Skip to main content

Neurophysiology of Migraine

  • Chapter
Pathophysiology of Headaches

Part of the book series: Headache ((HEAD))

Abstract

Migraine is a recurrent ictal headache disorder accompanied by multisensory symptoms and pain-free interictal periods of variable length between attacks. During the last few decades, many research groups have used a variety of neurophysiological techniques to search for biomarkers of subtle CNS – factors that may predispose individuals to migraine attacks. Researchers have demonstrated significant changes in bioelectrical activity in the brains of migraineurs that change during the migraine cycle, although controversy remain regarding the reliability, effect size and utility of several findings. Notably, various abnormalities of spinal, brainstem and cortical responsivity to external innocuous or noxious stimuli have been described in several migraine groups by several research teams.

Progress over the next few years will largely depend on gaining a better understanding of the mechanisms underlying abnormal responsivity as measured by robust parameters. Also, the variations with the migraine cycle and its relationship with changes in thalamocortical rhythms and the activity of subcortico-(thalamo-)cortical pathways should be explored. Reliable biomarkers should be sought and identified by replication with thoroughly blinded studies, by collecting accurately clinical data and headache diaries before, during and after the test days and by prospectively monitoring the patients’ clinical fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAEP:

Brainstem auditory evoked potential

CAP:

Cyclic alternating pattern

CM:

Chronic migraine

CNV:

Contingent negative variation

CR:

Corneal reflex

CSP:

Cortical silent period

EEG:

Electroencephalography

EMG:

Electromyography

ERP:

Event-related potential

ES:

Exteroceptive suppression

HR:

H-response-increased photic driving amplitude

IDAP:

Intensity-dependent auditory evoked cortical potentials

LEP:

Laser evoked potential

MA:

Migraine with aura

MEP:

Motor evoked potentials

MO:

Migraine without aura

MOH:

Medication overuse headache

nBR:

Nociceptive blink reflex

NSM:

Non-sleep-related migraine

PAS:

Paired associative stimulation

PD:

Photic driving

PR:

Pattern reversal

PSG:

Polysomnography

PT:

Phosphene threshold

qEEG:

Quantitative electroencephalography

rTMS:

Repetitive transcranial magnetic stimulation

SM:

Sleep-related migraine

SSEP:

Somatosensory evoked potential

sTMS:

Single-pulse transcranial magnetic stimulation

TCR:

Trigemino-cervical reflex

tDCS:

Transcranial direct-current stimulation

TMS:

Transcranial magnetic stimulation

TSR:

Trigemino-spinal reflex

VEP:

Visual evoked potential

References

  1. Sand T (1991) EEG in migraine: a review of the literature. Funct Neurol 6(1):7–22

    CAS  PubMed  Google Scholar 

  2. Sand T (2003) Electroencephalography in migraine: a review with focus on quantitative electroencephalography and the migraine vs. epilepsy relationship. Cephalalgia 1:5–11

    Google Scholar 

  3. Parrino L, Pietrini V, Spaggiari M, Terzano M (1986) Acute confusional migraine attacks resolved by sleep: lack of significant abnormalities in post-ictal polysomnograms. Cephalalgia 6(2):95–100

    CAS  PubMed  Google Scholar 

  4. Ganji S (1986) Basilar artery migraine: EEG and evoked potential patterns during acute stage. Headache 26(5):220–223

    CAS  PubMed  Google Scholar 

  5. Pietrini V, Terzano M, D’Andrea G, Parrino L, Cananzi A, Ferro-Milone F (1987) Acute confusional migraine: clinical and electroencephalographic aspects. Cephalalgia 7(1):29–37

    CAS  PubMed  Google Scholar 

  6. Haan J, Ferrari M, Brouwer O (1988) Acute confusional migraine. Case report and review of literature. Clin Neurol Neurosurg 90(3):275–278

    CAS  PubMed  Google Scholar 

  7. Golla FL, Winter AL (1959) Analysis of cerebral responses to flicker in patients complaining of episodic headache. Electroencephalogr Clin Neurophysiol 11(3):539–549

    CAS  PubMed  Google Scholar 

  8. Fogang Y, Gérard P, De P, Pepin J, Ndiaye M, Magis D et al (2014) Analysis and clinical correlates of 20 Hz photic driving on routine EEG in migraine. Acta Neurol Belg, DOI 10.1007/s13760-014-0309-8

  9. Goto F, Oishi N, Tsutsumi T, Ito T, Arai M, Ogawa K (2013) Characteristic electroencephalographic findings by photic driving in patients with migraine-associated vertigo. Acta Otolaryngol 133(3):253–256

    PubMed  Google Scholar 

  10. Puca FM, de Tommaso M, Tota P, Sciruicchio V (1996) Photic driving in migraine: correlations with clinical features. Cephalalgia 16(4):246–250

    CAS  PubMed  Google Scholar 

  11. Bjørk M, Hagen K, Stovner L, Sand T (2011) Photic EEG-driving responses related to ictal phases and trigger sensitivity in migraine: a longitudinal, controlled study. Cephalalgia 31(4):444–455

    PubMed  Google Scholar 

  12. Bjørk M, Stovner L, Hagen K, Sand T (2011) What initiates a migraine attack? Conclusions from four longitudinal studies of quantitative EEG and steady-state visual-evoked potentials in migraineurs. Acta Neurol Scand Suppl 191:56–63

    Google Scholar 

  13. de Tommaso M, Stramaglia S, Marinazzo D, Trotta G, Pellicoro M (2013) Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia 33(11):938–947

    PubMed  Google Scholar 

  14. Facchetti D, Marsile C, Faggi L, Donati E, Kokodoko A, Poloni M (1990) Cerebral mapping in subjects suffering from migraine with aura. Cephalalgia 10(6):279–284

    CAS  PubMed  Google Scholar 

  15. Schoenen J, Jamart B, Delwaide P (1987) Topographic EEG mapping in common and classic migraine during and between attacks. In: Rose FC (ed) Advances in headache research. Smith Gordon, London, pp 25–33

    Google Scholar 

  16. Hughes J, Robbins L (1990) Brain mapping in migraine. Clin Electroencephalogr 21(1):14–24

    CAS  PubMed  Google Scholar 

  17. Clemens B, Bánk J, Piros P, Bessenyei M, Veto S, Tóth M et al (2008) Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval. Brain Topogr 21(1):36–42

    PubMed  Google Scholar 

  18. Bjørk MH, Stovner LJ, Nilsen BM, Stjern M, Hagen K, Sand T (2009) The occipital alpha rhythm related to the “migraine cycle” and headache burden: a blinded, controlled longitudinal study. Clin Neurophysiol 120(3):464–471

    PubMed  Google Scholar 

  19. Sauer S, Schellenberg R, Hofmann H, Dimpfel W (1997) Functional imaging of headache – first steps in an objective quantitative classification of migraine. Eur J Med Res 2(9):367–376

    CAS  PubMed  Google Scholar 

  20. Bjørk M, Sand T (2008) Quantitative EEG power and asymmetry increase 36 h before a migraine attack. Cephalalgia 28(9):960–968

    PubMed  Google Scholar 

  21. Göder R, Fritzer G, Kapsokalyvas A, Kropp P, Niederberger U, Strenge H et al (2001) Polysomnographic findings in nights preceding a migraine attack. Cephalalgia 21(1):31–37

    PubMed  Google Scholar 

  22. Della Marca G, Vollono C, Rubino M, Di Trapani G, Mariotti P, Tonali PA (2006) Dysfunction of arousal systems in sleep-related migraine without aura. Cephalalgia 26(7):857–864

    CAS  PubMed  Google Scholar 

  23. Engstrøm M, Hagen K, Bjørk M, Gravdahl G, Sand T (2013) Sleep-related and non-sleep-related migraine: interictal sleep quality, arousals and pain thresholds. J Headache Pain 14:68

    PubMed Central  PubMed  Google Scholar 

  24. Engstrøm M, Hagen K, Bjørk M, Stovner L, Gravdahl G, Stjern M et al (2013) Sleep quality, arousal and pain thresholds in migraineurs: a blinded controlled polysomnographic study. J Headache Pain 14(1):12

    PubMed Central  PubMed  Google Scholar 

  25. Fritzer G, Strenge H, Göder R, Gerber WD, Aldenhoff J (2004) Changes in cortical dynamics in the preictal stage of a migraine attack. J Clin Neurophysiol 21(2):99–104

    PubMed  Google Scholar 

  26. Coppola G, Pierelli F, Schoenen J (2007) Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia 27(12):1427–1439

    CAS  PubMed  Google Scholar 

  27. Schoenen J, Wang W, Albert A, Delwaide P (1995) Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol 2:115–122

    CAS  PubMed  Google Scholar 

  28. Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J (1998) Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121(Pt 2):233–241

    PubMed  Google Scholar 

  29. Ozkul Y, Bozlar S (2002) Effects of fluoxetine on habituation of pattern reversal visually evoked potentials in migraine prophylaxis. Headache 42(7):582–587

    PubMed  Google Scholar 

  30. Fumal A, Coppola G, Bohotin V, Gérardy PY, Seidel L, Donneau AF et al (2006) Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia 26(2):143–149

    CAS  PubMed  Google Scholar 

  31. Coppola G, Di Lorenzo C, Schoenen J, Pierelli F (2013) Habituation and sensitization in primary headaches. J Headache Pain 14(1):65

    PubMed Central  PubMed  Google Scholar 

  32. Oelkers R, Grosser K, Lang E, Geisslinger G, Kobal G, Brune K et al (1999) Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency. Brain 122(Pt 6):1147–1155

    PubMed  Google Scholar 

  33. Sand T, Vingen JV (2000) Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia 20(9):804–820

    CAS  PubMed  Google Scholar 

  34. Sand T, Zhitniy N, White LR, Stovner LJ (2008) Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol 119(5):1020–1027

    PubMed  Google Scholar 

  35. Omland P, Nilsen K, Uglem M, Gravdahl G, Linde M, Hagen K et al (2013) Visual evoked potentials in interictal migraine: no confirmation of abnormal habituation. Headache 53(7):1071–1086

    PubMed  Google Scholar 

  36. Chen W, Wang S, Fuh J, Lin C, Ko Y, Lin Y (2011) Persistent ictal-like visual cortical excitability in chronic migraine. Pain 152(2):254–258

    PubMed  Google Scholar 

  37. Bednář M, Kubová Z, Kremláček J (2014) Lack of visual evoked potentials amplitude decrement during prolonged reversal and motion stimulation in migraineurs. Clin Neurophysiol 125(6):1223–1230

    PubMed  Google Scholar 

  38. Coppola G, Parisi V, Di Lorenzo C, Serrao M, Magis D, Schoenen J et al (2013) Lateral inhibition in visual cortex of migraine patients between attacks. J Headache Pain 14:20

    PubMed Central  PubMed  Google Scholar 

  39. Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P et al (2007) Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia 27(12):1360–1367

    CAS  PubMed  Google Scholar 

  40. Coppola G, Currà A, Sava SL, Alibardi A, Parisi V, Pierelli F et al (2010) Changes in visual-evoked potential habituation induced by hyperventilation in migraine. J Headache Pain 11(6):497–503

    PubMed Central  PubMed  Google Scholar 

  41. Coppola G, Crémers J, Gérard P, Pierelli F, Schoenen J (2011) Effects of light deprivation on visual evoked potentials in migraine without aura. BMC Neurol 11:91

    PubMed Central  PubMed  Google Scholar 

  42. Judit A, Sándor PS, Schoenen J (2000) Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 20(8):714–719

    CAS  PubMed  Google Scholar 

  43. Chen W, Wang S, Fuh J, Lin C, Ko Y, Lin Y (2009) Peri-ictal normalization of visual cortex excitability in migraine: an MEG study. Cephalalgia 29(11):1202–1211

    PubMed  Google Scholar 

  44. Sand T, White L, Hagen K, Stovner L (2009) Visual evoked potential and spatial frequency in migraine: a longitudinal study. Acta Neurol Scand Suppl 189:33–37

    PubMed  Google Scholar 

  45. Sand T, Zhitniy N, White LR, Stovner LJ (2008) Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin Neurophysiol 119(5):1190–1200

    PubMed  Google Scholar 

  46. Schlake HP, Grotemeyer KH, Hofferberth B, Husstedt IW, Wiesner S (1990) Brainstem auditory evoked potentials in migraine–evidence of increased side differences during the pain-free interval. Headache 30(3):129–132

    CAS  PubMed  Google Scholar 

  47. Wang W, Timsit-Berthier M, Schoenen J (1996) Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology 46(5):1404–1409

    CAS  PubMed  Google Scholar 

  48. Ambrosini A, Rossi P, De Pasqua V, Pierelli F, Schoenen J (2003) Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain 126(Pt 9):2009–2015

    CAS  PubMed  Google Scholar 

  49. Ambrosini A, De Pasqua V, Afra J, Sandor PS, Schoenen J (2001) Reduced gating of middle-latency auditory evoked potentials (P50) in migraine patients: another indication of abnormal sensory processing? Neurosci Lett 306(1–2):132–134

    CAS  PubMed  Google Scholar 

  50. Siniatchkin M, Kropp P, Gerber WD (2003) What kind of habituation is impaired in migraine patients? Cephalalgia 23(7):511–518

    CAS  PubMed  Google Scholar 

  51. Chayasirisobhon S (1995) Somatosensory evoked potentials in acute migraine with sensory aura. Clin Electroencephalogr 26(1):65–69

    CAS  PubMed  Google Scholar 

  52. de Tommaso M, Sciruicchio V, Tota P, Megna M, Guido M, Genco S et al (1997) Somatosensory evoked potentials in migraine. Funct Neurol 12(2):77–82

    PubMed  Google Scholar 

  53. Ozkul Y, Uckardes A (2002) Median nerve somatosensory evoked potentials in migraine. Eur J Neurol 9(3):227–232

    CAS  PubMed  Google Scholar 

  54. Coppola G, Currà A, Di Lorenzo C, Parisi V, Gorini M, Sava SL et al (2010) Abnormal cortical responses to somatosensory stimulation in medication-overuse headache. BMC Neurol 10:126

    PubMed Central  PubMed  Google Scholar 

  55. Coppola G, De Pasqua V, Pierelli F, Schoenen J (2012) Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia 32(9):700–709

    PubMed  Google Scholar 

  56. Sakuma K, Takeshima T, Ishizaki K, Nakashima K (2004) Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol 115(8):1857–1862

    PubMed  Google Scholar 

  57. Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, De Pasqua V et al (2005) Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain 128(Pt 1):98–103

    PubMed  Google Scholar 

  58. Coppola G, Iacovelli E, Bracaglia M, Serrao M, Di Lorenzo C, Pierelli F (2013) Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement. J Headache Pain 14(1):76

    PubMed Central  PubMed  Google Scholar 

  59. Restuccia D, Vollono C, Virdis D, del Piero I, Martucci L, Zanini S (2014) Patterns of habituation and clinical fluctuations in migraine. Cephalalgia 34(3):201–210

    PubMed  Google Scholar 

  60. Darabaneanu S, Kropp P, Niederberger U, Strenge H, Gerber W (2008) Effects of pregnancy on slow cortical potentials in migraine patients and healthy controls. Cephalalgia 28(10):1053–1060

    CAS  PubMed  Google Scholar 

  61. Kropp P, Siniatchkin M, Gerber WD (2000) Contingent negative variation as indicator of duration of migraine disease. Funct Neurol 15(Suppl 3):78–81

    PubMed  Google Scholar 

  62. Kropp P, Brecht I, Niederberger U, Kowalski J, Schröder D, Thome J et al (2012) Time-dependent post-imperative negative variation indicates adaptation and problem solving in migraine patients. J Neural Transm 119(10):1213–1221

    PubMed  Google Scholar 

  63. Schoenen J, Maertens A, Timsit-Berthier M, Timsit M (1985) Contingent negative variation (CNV) as a diagnostic and physiopathologic tool in headache patients. In: Rose F (ed) Migraine. Clinical and research advances. Karger, Basel, pp 17–25

    Google Scholar 

  64. Kropp P, Gerber WD (1993) Contingent negative variation–findings and perspectives in migraine. Cephalalgia 13(1):33–36

    CAS  PubMed  Google Scholar 

  65. Siniatchkin M, Gerber WD, Kropp P, Voznesenskaya T, Vein AM (2000) Are the periodic changes of neurophysiological parameters during the pain-free interval in migraine related to abnormal orienting activity? Cephalalgia 20(1):20–29

    CAS  PubMed  Google Scholar 

  66. Siniatchkin M, Kropp P, Gerber WD (2001) Contingent negative variation in subjects at risk for migraine without aura. Pain 94(2):159–167

    CAS  PubMed  Google Scholar 

  67. Siniatchkin M, Andrasik F, Kropp P, Niederberger U, Strenge H, Averkina N et al (2007) Central mechanisms of controlled-release metoprolol in migraine: a double-blind, placebo-controlled study. Cephalalgia 27(9):1024–1032

    CAS  PubMed  Google Scholar 

  68. Siniatchkin M, Kropp P, Gerber WD, Stephani U (2000) Migraine in childhood–are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosci Lett 279(1):1–4

    CAS  PubMed  Google Scholar 

  69. Schoenen J, Maertens de Noordhout A, Timsit-Berthier M, Timsit M (1986) Contingent negative variation and efficacy of beta-blocking agents in migraine. Cephalalgia 6(4):229–233

    CAS  PubMed  Google Scholar 

  70. Tommaso M, Guido M, Sardaro M, Serpino C, Vecchio E, De S et al (2008) Effects of topiramate and levetiracetam vs placebo on habituation of contingent negative variation in migraine patients. Neurosci Lett 442(2):81–85

    PubMed  Google Scholar 

  71. Overath C, Darabaneanu S, Evers M, Gerber W, Graf M, Keller A et al (2014) Does an aerobic endurance programme have an influence on information processing in migraineurs? J Headache Pain 15(1):11

    PubMed Central  PubMed  Google Scholar 

  72. Morlet D, Demarquay G, Brudon F, Fischer C, Caclin A (2014) Attention orienting dysfunction with preserved automatic auditory change detection in migraine. Clin Neurophysiol 125(3):500–511

    PubMed  Google Scholar 

  73. de Tommaso M, Difruscolo O, Sardaro M, Libro G, Pecoraro C, Serpino C et al (2007) Effects of remote cutaneous pain on trigeminal laser-evoked potentials in migraine patients. J Headache Pain 8(3):167–174

    PubMed Central  PubMed  Google Scholar 

  74. de Tommaso M, Baumgartner U, Sardaro M, Difruscolo O, Serpino C, Treede RD (2008) Effects of distraction versus spatial discrimination on laser-evoked potentials in migraine. Headache 48(3):408–416

    PubMed  Google Scholar 

  75. de Tommaso M, Valeriani M, Sardaro M, Serpino C, Fruscolo OD, Vecchio E et al (2009) Pain perception and laser evoked potentials during menstrual cycle in migraine. J Headache Pain 10(6):423–429

    PubMed Central  PubMed  Google Scholar 

  76. de Tommaso M, Calabrese R, Vecchio E, De Vito Francesco V, Lancioni G, Livrea P (2009) Effects of affective pictures on pain sensitivity and cortical responses induced by laser stimuli in healthy subjects and migraine patients. Int J Psychophysiol 74(2):139–148

    PubMed  Google Scholar 

  77. de Tommaso M, Brighina F, Fierro B, Francesco V, Santostasi R, Sciruicchio V et al (2010) Effects of high-frequency repetitive transcranial magnetic stimulation of primary motor cortex on laser-evoked potentials in migraine. J Headache Pain 11(6):505–512

    PubMed Central  PubMed  Google Scholar 

  78. de Tommaso M, Federici A, Franco G, Ricci K, Lorenzo M, Delussi M et al (2012) Suggestion and pain in migraine: a study by laser evoked potentials. CNS Neurol Disord Drug Targets 11(2):110–126

    PubMed  Google Scholar 

  79. de Tommaso M, Guido M, Libro G, Losito L, Sciruicchio V, Monetti C et al (2002) Abnormal brain processing of cutaneous pain in migraine patients during the attack. Neurosci Lett 333(1):29–32

    PubMed  Google Scholar 

  80. de Tommaso M, Guido M, Libro G, Losito L, Difruscolo O, Puca F et al (2004) Topographic and dipolar analysis of laser-evoked potentials during migraine attack. Headache 44(10):947–960

    PubMed  Google Scholar 

  81. de Tommaso M, Libro G, Guido M, Losito L, Lamberti P, Livrea P (2005) Habituation of single CO2 laser-evoked responses during interictal phase of migraine. J Headache Pain 6(4):195–198

    PubMed Central  PubMed  Google Scholar 

  82. de Tommaso M, Lo Sito L, Di Fruscolo O, Sardaro M, Pia Prudenzano M, Lamberti P et al (2005) Lack of habituation of nociceptive evoked responses and pain sensitivity during migraine attack. Clin Neurophysiol 116(6):1254–1264

    PubMed  Google Scholar 

  83. Afra J, Mascia A, Gérard P, Maertens de Noordhout A, Schoenen J (1998) Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol 44(2):209–215

    CAS  PubMed  Google Scholar 

  84. Conforto A, Moraes M, Amaro E, Young W, Lois L, Gonçalves A et al (2012) Increased variability of motor cortical excitability to transcranial magnetic stimulation in migraine: a new clue to an old enigma. J Headache Pain 13(1):29–37

    PubMed Central  PubMed  Google Scholar 

  85. Siniatchkin M, Kröner-Herwig B, Kocabiyik E, Rothenberger A (2007) Intracortical inhibition and facilitation in migraine–a transcranial magnetic stimulation study. Headache 47(3):364–370

    PubMed  Google Scholar 

  86. Gunaydin S, Soysal A, Atay T, Arpaci B (2006) Motor and occipital cortex excitability in migraine patients. Can J Neurol Sci 33(1):63–67

    PubMed  Google Scholar 

  87. Curra A, Pierelli F, Coppola G, Barbanti P, Buzzi MG, Galeotti F et al (2007) Shortened cortical silent period in facial muscles of patients with migraine. Pain 132(1–2):124–131

    PubMed  Google Scholar 

  88. Currà A, Coppola G, Gorini M, Porretta E, Bracaglia M, Di Lorenzo C et al (2011) Drug-induced changes in cortical inhibition in medication overuse headache. Cephalalgia 31(12):1282–1290

    PubMed  Google Scholar 

  89. Brighina F, Palermo A, Panetta M, Daniele O, Aloisio A, Cosentino G et al (2009) Reduced cerebellar inhibition in migraine with aura: a TMS study. Cerebellum 8(3):260–266

    PubMed  Google Scholar 

  90. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50(4):1111–1114

    CAS  PubMed  Google Scholar 

  91. Bohotin V, Fumal A, Vandenheede M, Bohotin C, Schoenen J (2003) Excitability of visual V1-V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia 23(4):264–270

    CAS  PubMed  Google Scholar 

  92. Chadaide Z, Arlt S, Antal A, Nitsche M, Lang N, Paulus W (2007) Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 27(7):833–839

    CAS  PubMed  Google Scholar 

  93. Omland P, Uglem M, Engstrøm M, Linde M, Hagen K, Sand T (2014) Modulation of visual evoked potentials by high-frequency repetitive transcranial magnetic stimulation in migraineurs. Clin Neurophysiol 125(10):2090–9

    Google Scholar 

  94. Brigo F, Storti M, Tezzon F, Manganotti P, Nardone R (2013) Primary visual cortex excitability in migraine: a systematic review with meta-analysis. Neurol Sci 34(6):819–830

    PubMed  Google Scholar 

  95. Brighina F, Giglia G, Scalia S, Francolini M, Palermo A, Fierro B (2005) Facilitatory effects of 1 Hz rTMS in motor cortex of patients affected by migraine with aura. Exp Brain Res 161(1):34–38

    PubMed  Google Scholar 

  96. Conte A, Barbanti P, Frasca V, Iacovelli E, Gabriele M, Giacomelli E et al (2010) Differences in short-term primary motor cortex synaptic potentiation as assessed by repetitive transcranial magnetic stimulation in migraine patients with and without aura. Pain 148(1):43–48

    PubMed  Google Scholar 

  97. Brighina F, Cosentino G, Vigneri S, Talamanca S, Palermo A, Giglia G et al (2011) Abnormal facilitatory mechanisms in motor cortex of migraine with aura. Eur J Pain 15(9):928–935

    PubMed  Google Scholar 

  98. Cosentino G, Fierro B, Vigneri S, Talamanca S, Paladino P, Baschi R et al (2014) Cyclical changes of cortical excitability and metaplasticity in migraine: evidence from a repetitive transcranial magnetic stimulation study. Pain 155(6):1070–1078

    PubMed  Google Scholar 

  99. Pierelli F, Iacovelli E, Bracaglia M, Serrao M, Coppola G (2013) Abnormal sensorimotor plasticity in migraine without aura patients. Pain 154(9):1738–1742

    PubMed  Google Scholar 

  100. Siniatchkin M, Sendacki M, Moeller F, Wolff S, Jansen O, Siebner H et al (2012) Abnormal changes of synaptic excitability in migraine with aura. Cereb Cortex 22(10):2207–2216

    PubMed  Google Scholar 

  101. Viganò A, D’Elia T, Sava S, Auvé M, De P, Colosimo A et al (2013) Transcranial Direct Current Stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain 14(1):23

    PubMed Central  PubMed  Google Scholar 

  102. Aktekin B, Yaltkaya K, Ozkaynak S, Oguz Y (2001) Recovery cycle of the blink reflex and exteroceptive suppression of temporalis muscle activity in migraine and tension-type headache. Headache 41(2):142–149

    CAS  PubMed  Google Scholar 

  103. Sand T, Zwart J (1994) The blink reflex in chronic tension-type headache, migraine, and cervicogenic headache. Cephalalgia 14(6):447–450

    CAS  PubMed  Google Scholar 

  104. Sand T, Møll-Nilsen B, Zwart J (2006) Blink reflex R2 amplitudes in cervicogenic headache, chronic tension-type headache and migraine. Cephalalgia 26(10):1186–1191

    CAS  PubMed  Google Scholar 

  105. Bánk J, Bense E, Király C (1992) The blink reflex in migraine. Cephalalgia 12(5):289–292

    PubMed  Google Scholar 

  106. Avramidis T, Podikoglou D, Anastasopoulos I, Koutroumanidis M, Papadimitriou A (1998) Blink reflex in migraine and tension-type headache. Headache 38(9):691–696

    CAS  PubMed  Google Scholar 

  107. de Tommaso M, Murasecco D, Libro G, Guido M, Sciruicchio V, Specchio L et al (2002) Modulation of trigeminal reflex excitability in migraine: effects of attention and habituation on the blink reflex. Int J Psychophysiol 44(3):239–249

    PubMed  Google Scholar 

  108. Shibata K, Yamane K, Iwata M (2006) Change of excitability in brainstem and cortical visual processing in migraine exhibiting allodynia. Headache 46(10):1535–1544

    PubMed  Google Scholar 

  109. Katsarava Z, Giffin N, Diener HC, Kaube H (2003) Abnormal habituation of ‘nociceptive’ blink reflex in migraine–evidence for increased excitability of trigeminal nociception. Cephalalgia 23(8):814–819

    CAS  PubMed  Google Scholar 

  110. Di Clemente L, Coppola G, Magis D, Fumal A, De Pasqua V, Di Piero V et al (2007) Interictal habituation deficit of the nociceptive blink reflex: an endophenotypic marker for presymptomatic migraine? Brain 130(Pt 3):765–770

    PubMed  Google Scholar 

  111. Kaube H, Katsarava Z, Przywara S, Drepper J, Ellrich J, Diener HC (2002) Acute migraine headache: possible sensitization of neurons in the spinal trigeminal nucleus? Neurology 58(8):1234–1238

    CAS  PubMed  Google Scholar 

  112. Katsarava Z, Limmroth V, Baykal O, Akguen D, Diener H, Kaube H (2004) Differences of anti-nociceptive mechanisms of migraine drugs on the trigeminal pain processing during and outside acute migraine attacks. Cephalalgia 24(8):657–662

    CAS  PubMed  Google Scholar 

  113. Coppola G, Di Clemente L, Fumal A, Magis D, De Pasqua V, Pierelli F et al (2007) Inhibition of the nociceptive R2 blink reflex after supraorbital or index finger stimulation is normal in migraine without aura between attacks. Cephalalgia 27(7):803–808

    CAS  PubMed  Google Scholar 

  114. Sandrini G, Proietti C, Milanov I, Tassorelli C, Buzzi M, Nappi G (2002) Electrophysiological evidence for trigeminal neuron sensitization in patients with migraine. Neurosci Lett 317(3):135–138

    CAS  PubMed  Google Scholar 

  115. Busch V, Kaube S, Schulte-Mattler W, Kaube H, May A (2007) Sumatriptan and corneal reflexes in headache-free migraine patients: a randomized and placebo-controlled crossover study. Cephalalgia 27(2):165–172

    CAS  PubMed  Google Scholar 

  116. Nardone R, Ausserer H, Bratti A, Covi M, Lochner P, Marth R et al (2008) Trigemino-cervical reflex abnormalities in patients with migraine and cluster headache. Headache 48(4):578–585

    PubMed  Google Scholar 

  117. Serrao M, Perrotta A, Bartolo M, Fiermonte G, Pauri F, Rossi P et al (2005) Enhanced trigemino-cervical-spinal reflex recovery cycle in pain-free migraineurs. Headache 45(8):1061–1068

    PubMed  Google Scholar 

  118. Perrotta A, Serrao M, Sandrini G, Burstein R, Sances G, Rossi P et al (2010) Sensitisation of spinal cord pain processing in medication overuse headache involves supraspinal pain control. Cephalalgia 30(3):272–284

    CAS  PubMed  Google Scholar 

  119. Weissman-Fogel I, Sprecher E, Granovsky Y, Yarnitsky D (2003) Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons. Pain 104(3):693–700

    PubMed  Google Scholar 

  120. Perrotta A, Serrao M, Tassorelli C, Arce-Leal N, Guaschino E, Sances G et al (2011) Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur J Pain 15(5):482–490

    CAS  PubMed  Google Scholar 

  121. Ayzenberg I, Obermann M, Nyhuis P, Gastpar M, Limmroth V, Diener HC et al (2006) Central sensitization of the trigeminal and somatic nociceptive systems in medication overuse headache mainly involves cerebral supraspinal structures. Cephalalgia 26(9):1106–1114

    CAS  PubMed  Google Scholar 

  122. de Tommaso M, Valeriani M, Guido M, Libro G, Specchio LM, Tonali P et al (2003) Abnormal brain processing of cutaneous pain in patients with chronic migraine. Pain 101(1–2):25–32

    PubMed  Google Scholar 

  123. de Tommaso M, Losito L, Difruscolo O, Libro G, Guido M, Livrea P (2005) Changes in cortical processing of pain in chronic migraine. Headache 45(9):1208–1218

    PubMed  Google Scholar 

  124. Lorenzo C, Coppola G, Currà A, Grieco G, Santorelli F, Lepre C et al (2012) Cortical response to somatosensory stimulation in medication overuse headache patients is influenced by angiotensin converting enzyme (ACE) I/D genetic polymorphism. Cephalalgia 32(16):1189–1197

    PubMed  Google Scholar 

  125. Siniatchkin M, Gerber WD, Kropp P, Vein A (1998) Contingent negative variation in patients with chronic daily headache. Cephalalgia 18(8):565–569; discussion 531

    CAS  PubMed  Google Scholar 

  126. Ferraro D, Vollono C, Miliucci R, Virdis D, De A, Pazzaglia C et al (2012) Habituation to pain in “medication overuse headache”: a CO2 laser-evoked potential study. Headache 52(5):792–807

    PubMed  Google Scholar 

  127. Aurora S, Barrodale P, Tipton R, Khodavirdi A (2007) Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache 47(7):996–1003

    PubMed  Google Scholar 

  128. De Marinis M, Pujia A, Colaizzo E, Accornero N (2007) The blink reflex in “chronic migraine”. Clin Neurophysiol 118(2):457–463

    PubMed  Google Scholar 

  129. Sandrini G, Friberg L, Coppola G, Jänig W, Jensen R, Kruit M et al (2011) Neurophysiological tests and neuroimaging procedures in non-acute headache (2nd edition). Eur J Neurol 18(3):373–381

    CAS  PubMed  Google Scholar 

  130. Sacks O, Siegel R (2012) Migraine aura and hallucinatory constants. In: Sacks O (ed) Migraine. Picador, London, pp 273–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluca Coppola or Trond Sand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coppola, G., Pierelli, F., Omland, P.M., Sand, T. (2015). Neurophysiology of Migraine. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics