Skip to main content

Seismic Detection of Post-perovskite Inside the Earth

  • Chapter
  • First Online:
The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Since 2004, we have known that perovskite, the most abundant mineral in the lower mantle , has the capacity to transform to a denser structure, post-perovskite, if subjected to sufficiently high temperature and pressure . But does post-perovskite exist inside the Earth? And if it does, do we have the resources to locate it seismically? In this chapter, we present an overview of what we know about the perovskite-to-post-perovskite phase transformation from mineral physics, and how this can be translated into seismic structure. In light of these constraints, we evaluate the current lines of evidence from global and regional seismology which have been used to indicate that post-perovskite is likely present in the deep mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Google Scholar 

  • Akahama Y, Kawamura H, Singh A (2002) Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa. J Appl Phys 92:5892–5897

    Google Scholar 

  • Akber-Knutson S, Steinle-Neumann G, Asimow PD (2005) Effect of Al on the sharpness of the MgSiO3 perovskite to post-perovskite phase transition. Geophys Res Lett 32:L14303

    Google Scholar 

  • Ammann MW, Brodholt JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D″ layer. Nature 465:462–465

    Google Scholar 

  • Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Google Scholar 

  • Andrault D, Munoz M, Bolfan-Casanova N, Guignot N, Perrillat J, Aquilanti G, Pascarelli S (2010) Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D″ region. Earth Planet Sci Lett 293:90–96

    Google Scholar 

  • Asanuma H, Ohtani E, Sakai T, Terasaki H, Kamada S, Kondo T, Kikegawa T (2010) Melting of iron-silicon alloy up to the core-mantle boundary pressure: implications to the thermal structure of the Earth’s core. Phys Chem Miner 37:353–359

    Google Scholar 

  • Avants M, Lay T, Russell S, Garnero E (2006) Shear velocity variation within the D″ region beneath the central Pacific. J Geophys Res Solid Earth 111:B05305

    Google Scholar 

  • Baumgardt DR (1989) Evidence for a P-wave velocity anomaly in D″. Geophys Res Lett 16:657–660

    Google Scholar 

  • Beghein C, Trampert J, van Heijst HJ (2006) Radial anisotropy in seismic reference models of the mantle. J Geophys Res Solid Earth 111:B02303

    Google Scholar 

  • Bullen KE (1950) An earth model based on a compressibility-pressure hypothesis. Geophys J Int 6:50–59

    Google Scholar 

  • Cammarano F, Goes S, Deuss A, Giardini D (2005) Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet Sci Lett 232:227–243

    Google Scholar 

  • Campbell AJ, Seagle CT, Heinz DL, Shen G, Prakapenka VB (2007) Partial melting in the iron-sulfur system at high pressure: a synchrotron X-ray diffraction study. Phys Earth Planet Inter 162:119–128

    Google Scholar 

  • Caracas R, Cohen RE (2005a) Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle. Geophys Res Lett 32:L16310

    Google Scholar 

  • Caracas R, Cohen R (2005b) Prediction of a new phase transition in Al2O3 at high pressures. Geophys Res Lett 32:L06303

    Google Scholar 

  • Catalli K, Shim S, Prakapenka V (2009) Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462:782–785

    Google Scholar 

  • Chaloner JW, Thomas C, Rietbrock A (2009) P- and S-wave reflectors in D′ beneath southeast Asia. Geophys J Int 179:1080–1092

    Google Scholar 

  • Chambers K, Woodhouse JH (2006) Transient D″ discontinuity revealed by seismic migration. Geophys Res Lett 33:L17312

    Google Scholar 

  • Christensen UR (1989) Models of mantle convection—one or several layers. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 328:417–424

    Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic-crust in the convecting mantle. J Geophys Res Solid Earth 99:19867–19884

    Google Scholar 

  • Cobden L, Thomas C (2013) The origin of D′ reflections: a systematic study of seismic array data sets. Geophys J Int 194:1091–1118

    Google Scholar 

  • Cobden L, Goes S, Ravenna M, Styles E, Cammarano F, Gallagher K, Connolly JAD (2009) Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of nonadiabatic thermal gradients and compositional heterogeneity. J Geophys Res Solid Earth 114:B11309

    Google Scholar 

  • Cobden L, Mosca I, Trampert J, Ritsema J (2012) On the likelihood of post-perovskite near the core-mantle boundary: a statistical interpretation of seismic observations. Phys Earth Planet Inter 210:21–35

    Google Scholar 

  • Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71:035105

    Google Scholar 

  • Davies GF, Gurnis M (1986) Interaction of mantle dregs with convection: lateral heterogeneity at the core mantle boundary. Geophys Res Lett 13:1517–1520

    Google Scholar 

  • Davies D, Kelly E, Filson J (1971) Vespa process for analysis of seismic signals. Nat Phys Sci 232:8–13

    Google Scholar 

  • Davis JP, Weber M (1990) Lower mantle velocity inhomogeneity observed at GRF array. Geophys Res Lett 17

    Google Scholar 

  • Deschamps F, Trampert J (2003) Mantle tomography and its relation to temperature and composition. Phys Earth Planet Inter 140:277–291

    Google Scholar 

  • Dewaele A, Loubeyre P, Mezouar M (2004) Equations of state of six metals above 94 GPa. Phys Rev B 70:094112

    Google Scholar 

  • Ding X, Helmberger D (1997) Modelling D″ structure beneath Central America with broadband seismic data. Phys Earth Planet Inter 101:245–270

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    Google Scholar 

  • Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res Solid Earth 109:B02305

    Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci USA 104:9182–9186

    Google Scholar 

  • Fichtner A, Kennett BLN, Igel H, Bunge H (2010) Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet Sci Lett 290:270–280

    Google Scholar 

  • Flores C, Lay T (2005) The trouble with seeing double. Geophys Res Lett 32:L24305

    Google Scholar 

  • Fouch M, Fischer K, Wysession M (2001) Lowermost mantle anisotropy beneath the Pacific: imaging the source of the Hawaiian plume. Earth Planet Sci Lett 190:167–180

    Google Scholar 

  • Fuji N, Chevrot S, Zhao L, Geller RJ, Kawai K (2012) Finite-frequency structural sensitivities of short-period compressional body waves. Geophys J Int 190:522–540

    Google Scholar 

  • Gaherty JB, Lay T (1992) Investigation of laterally heterogeneous shear velocity structure in D″ beneath Eurasia. J Geophys Res Solid Earth 97:417–435

    Google Scholar 

  • Garnero EJ, Lay T (1997) Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. J Geophys Res Solid Earth 102:8121–8135

    Google Scholar 

  • Grand S (2002) Mantle shear-wave tomography and the fate of subducted slabs. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360:2475–2491

    Google Scholar 

  • Grocholski B, Catalli K, Shim S, Prakapenka V (2012) Mineralogical effects on the detectability of the postperovskite boundary. Proc Natl Acad Sci USA 109:2275–2279

    Google Scholar 

  • Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core-mantle boundary P-T conditions. Earth Planet Sci Lett 256:162–168

    Google Scholar 

  • Gutenberg B (1914) Uber Erdbebenwellen. VII A Beobachtungen an Registrierungen von Fernbeben in Gottingen und Folgerungen uber die Konstitution des Erdkorpers. Nachr d K Ges d Wiss zu Gottingen, Math Phys Klasse 125–177

    Google Scholar 

  • Hernlund JW, Houser C (2008) The statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet Sci Lett 265:423–437

    Google Scholar 

  • Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886

    Google Scholar 

  • Hirose K (2006) Postperovskite phase transition and its geophysical implications. Rev Geophys 44:RG3001

    Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251

    Google Scholar 

  • Hirose K, Sinmyo R, Sata N, Ohishi Y (2006) Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys Res Lett 33:L01310

    Google Scholar 

  • Hirose K, Sata N, Komabayashi T, Ohishi Y (2008a) Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au based on the MgO pressure scale. Phys Earth Planet Inter 167:149–154

    Google Scholar 

  • Hirose K, Takafuji N, Fujino K, Shieh SR, Duffy TS (2008b) Iron partitioning between perovskite and post-perovskite: a transmission electron microscope study. Am Mineral 93:1678–1681

    Google Scholar 

  • Hirose K, Nagaya Y, Merkel S, Ohishi Y (2010) Deformation of MnGeO3 post-perovskite at lower mantle pressure and temperature. Geophys Res Lett 37:L20302

    Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 gpa (6.6 mbar). J Appl Phys 66:2962–2967

    Google Scholar 

  • Houard S, Nataf HC (1992) Further evidence for the lay discontinuity beneath northern Siberia and the North-Atlantic from short-period P-waves recorded in France. Phys, Earth Planet Inter 72

    Google Scholar 

  • Houard S, Nataf HC (1993) Laterally varying reflector at the top of D″ beneath northern Siberia. Geophys J Int 115

    Google Scholar 

  • Houser C (2007) Constraints on the presence or absence of post-perovskites in the lower mantle from long-period seismology. In: Hirose K, Brodholt JP, Lay T, Yuen DA (eds) Post-perovskite: the last mantle phase transition, vol 174. American Geophysical Union, Washington D.C., pp 191–216

    Google Scholar 

  • Hunt SA, Weidner DJ, Li L, Wang L, Walte NP, Brodholt JP, Dobson DP (2009) Weakening of calcium iridate during its transformation from perovskite to post-perovskite. Nat Geosci 2:794–797

    Google Scholar 

  • Hutko A, Lay T, Garnero E, Revenaugh J (2006) Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature 441:333–336

    Google Scholar 

  • Hutko AR, Lay T, Revenaugh J, Garnero EJ (2008) Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle. Science 320:1070–1074

    Google Scholar 

  • Hutko AR, Lay T, Revenaugh J (2009) Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific. Phys Earth Planet Inter 173:60–74

    Google Scholar 

  • Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO(3) post-perovskite phase in the Earth’s lowermost mantle. Nature 430:442–445

    Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285:1231–1236

    Google Scholar 

  • Jamieson JC, Fritz JN, Manghnani MH (1982) Pressure measurements at high temperature in X-ray diffraction studies: gold as a primary standard. In: Akimoto S, Manghnani Murli H (eds) High-pressure research in geophysics. Centre for Academic Publications Japan, Tokyo, pp 27–48

    Google Scholar 

  • Kamada S, Terasaki H, Ohtani E, Sakai T, Kikegawa T, Ohishi Y, Hirao N, Sata N, Kondo T (2010) Phase relationships of the Fe-FeS system in conditions up to the Earth’s outer core. Earth Planet Sci Lett 294:94–100

    Google Scholar 

  • Kaneshima S, Helffrich G (1999) Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science 283:1888–1891

    Google Scholar 

  • Kawai K, Geller RJ (2010) Waveform inversion for localized seismic structure and an application to D″ structure beneath the Pacific. J Geophys Res Solid Earth 115:B01305

    Google Scholar 

  • Kawai K, Tsuchiya T (2009) Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proc Natl Acad Sci USA 106:22119–22123

    Google Scholar 

  • Kawai K, Geller RJ, Fuji N (2007a) D″ beneath the Arctic from inversion of shear waveforms. Geophys Res Lett 34:L21305

    Google Scholar 

  • Kawai K, Takeuchi N, Geller RJ, Fuji N (2007b) Possible evidence for a double crossing phase transition in D″ beneath Central America from inversion of seismic waveforms. Geophys Res Lett 34:L09314

    Google Scholar 

  • Kawai K, Geller RJ, Fuji N (2010) Waveform inversion for S-wave structure in the lowermost mantle beneath the Arctic: Implications for mineralogy and chemical composition. Geophys Res Lett 37:L16301

    Google Scholar 

  • Kendall J, Nangini C (1996) Lateral variations in D″ below the Caribbean. Geophys Res Lett 23:399–402

    Google Scholar 

  • Kendall JM, Silver PG (1998) Investigating causes of D″ anisotropy. In: Gurnis M, Wysession ME, Knittle E, Buffet BA (eds) The core-mantle boundary region. American Geophysical Union, Washington D.C., pp 97–118

    Google Scholar 

  • Kennett B, Engdahl E, Buland R (1995) Constraints on seismic velocities in the Earth from travel-times. Geophys J Int 122:108–124

    Google Scholar 

  • Kesson S, Fitz Gerald J, Shelley J (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255

    Google Scholar 

  • Kito T, Rost S, Thomas C, Garnero EJ (2007) New insights into the P- and S-wave velocity structure of the D″ discontinuity beneath the Cocos plate. Geophys J Int 169:631–645

    Google Scholar 

  • Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, fe)sio3 perovskite to over 100 gigapascals. Science 235:668–670

    Google Scholar 

  • Knittle E, Jeanloz R (1989) Simulating the core-mantle boundary—an experimental-study of high-pressure reactions between silicates and liquid-iron. Geophys Res Lett 16:609–612

    Google Scholar 

  • Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe-Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowustite in the Earth’s lower mantle. Geophys Res Lett 32:L19301

    Google Scholar 

  • Konishi K, Kawai K, Geller RJ, Fuji N (2009) MORB in the lowermost mantle beneath the western Pacific: evidence from waveform inversion. Earth Planet Sci Lett 278:219–225

    Google Scholar 

  • Konishi K, Kawai K, Geller RJ, Fuji N (2012) Waveform inversion of broad-band body wave data for the S-velocity structure in the lowermost mantle beneath the Indian subcontinent and Tibetan Plateau. Geophys J Int 191:305–316

    Google Scholar 

  • Kubo A, Kiefer B, Shim S, Shen G, Prakapenka VB, Duffy TS (2008) Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Mineral 93:965–976

    Google Scholar 

  • Kustowski B, Ekstrom G, Dziewonski AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res Sol Earth 113:B06306

    Google Scholar 

  • Lay T (2008) Sharpness of the D″ discontinuity beneath the Cocos plate: implications for the perovskite to post-perovskite phase transition. Geophys Res Lett 35:L03304

    Google Scholar 

  • Lay T, Garnero E (2004) Core-mantle boundary structures and processes. In: Sparkes RSJ, Hawkesworth CJ (eds) State of the planet: frontiers and challenges in geophysics, vol 150. American Geophysical Union, Washington D.C., pp 25–41

    Google Scholar 

  • Lay T, Garnero EJ (2007) Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure. In: Hirose K, Brodholt John, Lay Thorne, Yuen David (eds) Post-perovskite: the last mantle phase transition. American Geophysical Union, Washington D.C., pp 129–153

    Google Scholar 

  • Lay T, Garnero EJ (2011) Deep mantle seismic modeling and imaging. Annu Rev Earth Planet Sci 39(39):91–123

    Google Scholar 

  • Lay T, Helmberger D (1983) A lower mantle S-wave triplication and the shear velocity structure of D″. Geophys J Roy Astron Soc 75:799–837

    Google Scholar 

  • Lay T, Young CJ (1991) Analysis of seismic SV waves in the cores penumbra. Geophys Res Lett 18:1373–1376

    Google Scholar 

  • Lay T, Garnero E, Russell S (2004) Lateral variation of the D″ discontinuity beneath the Cocos plate. Geophys Res Lett 31:L15612

    Google Scholar 

  • Lay T, Hernlund J, Garnero EJ, Thorne MS (2006) A post-perovskite lens and D″ heat flux beneath the central Pacific. Science 314:1272–1276

    Google Scholar 

  • Long MD (2009) Complex anisotropy in D″ beneath the eastern Pacific from SKS-SKKS splitting discrepancies. Earth Planet Sci Lett 283:181–189

    Google Scholar 

  • Mao WL, Shen G, Prakapenka V, Meng Y, Campbell A, Heinz D, Shu J, Hemley R, Mao H (2004) Ferromagnesian postperovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA. 101:15867–15869

    Google Scholar 

  • Mao WL et al (2005) Iron-rich silicates in the Earth’s D″ layer. Proc Natl Acad Sci USA 102

    Google Scholar 

  • Mao WL, Meng Y, Mao H (2010) Elastic anisotropy of ferromagnesian post-perovskite in Earth’s D″ layer. Phys Earth Planet Inter 180:203–208

    Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In: Karato S, Forte A, Liebermann R, Masters G, Stixrude L (eds) Earth’s deep interior: mineral physics and tomography from the atomic to the global scale, vol 117. American Geophysical Union, Washington D.C., pp 63–87

    Google Scholar 

  • Matzel E, Sen MK, Grand SP (1996) Evidence for anisotropy in the deep mantle beneath Alaska. Geophys Res Lett 23:2417–2420

    Google Scholar 

  • Maupin V, Garnero EJ, Lay T, Fouch MJ (2005) Azimuthal anisotropy in the D″ layer beneath the Caribbean. J Geophys Res Solid Earth 110:B08301

    Google Scholar 

  • McNamara AK, Zhong SJ (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437

    Google Scholar 

  • Meade C, Mao HK, Hu JZ (1995) High-temperature phase-transition and dissociation of (Mg, fe)sio3 perovskite at lower mantle pressures. Science 268:1743–1745

    Google Scholar 

  • Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Duffy TS, Wenk H (2007) Deformation of (Mg, Fe)SiO(3) post-perovskite and D anisotropy. Science 316:1729–1732

    Google Scholar 

  • Metsue A, Tsuchiya T (2012) Thermodynamic properties of (Mg, Fe2+)SiO3 perovskite at the lower-mantle pressures and temperatures: an internally consistent LSDA + U study. Geophys J Int 190:310–322

    Google Scholar 

  • Metsue A, Tsuchiya T (2013) Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures. Proc Jpn Acad Ser B Phys Biol Sci 89:51–58

    Google Scholar 

  • Miyagi L, Nishlyama N, Wang Y, Kubo A, West DV, Cava RJ, Duffy TS, Wenk H (2008) Deformation and texture development in CaIrO(3) post-perovskite phase up to 6 GPa and 1300 K. Earth Planet Sci Lett 268:515–525

    Google Scholar 

  • Miyagi L, Kanitpanyacharoen W, Kaercher P, Lee KKM, Wenk H (2010) Slip systems in MgSiO3 post-perovskite: implications for D″ anisotropy. Science 329:1639–1641

    Google Scholar 

  • Miyagi L, Kanitpanyacharoen W, Stackhouse S, Militzer B, Wenk H (2011) The enigma of post-perovskite anisotropy: deformation versus transformation textures. Phys Chem Miner 38:665–678

    Google Scholar 

  • Miyajima N, Ohgushi K, Ichihara M, Yagi T (2006) Crystal morphology and dislocation microstructures of CaIrO(3): a TEM study of an analogue of the MgSiO(3) post-perovskite phase. Geophys Res Lett 33:L12302

    Google Scholar 

  • Montagner JP, Kennett BLN (1996) How to reconcile body-wave and normal-mode reference earth models. Geophys J Int 125:229–248

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343

    Google Scholar 

  • Mosca I (2010) Probabilistic tomography using body wave, normal mode and surface wave data. PhD Thesis, Utrecht University, Utrecht

    Google Scholar 

  • Mosca I, Trampert J (2009) Path-average kernels for long wavelength traveltime tomography. Geophys J Int 177:639–650

    Google Scholar 

  • Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res Solid Earth 117:B06304

    Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte-carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100:12431–12447

    Google Scholar 

  • Muirhead K, Datt R (1976) N-th root process applied to seismic array data. Geophys J Roy Astron Soc 47:197–210

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L03304

    Google Scholar 

  • Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K (2007) Sound velocity of MgSiO3 post-perovskite phase: a constraint on the D″discontinuity. Earth Planet Sci Lett 259:18–23

    Google Scholar 

  • Murakami M, Ohishi Y, Hirao N, Hirose K (2012) A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485:90–94

    Google Scholar 

  • Nakagawa T, Tackley PJ (2011) Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophys Res Lett 38:L04309

    Google Scholar 

  • Neuberg J, Wahr J (1991) Detailed investigation of a spot on the core mantle boundary using digital PcP data. Phys Earth Planet Inter 68:132–143

    Google Scholar 

  • Nishio-Hamane D, Fujino K, Seto Y, Nagai T (2007) Effect of the incorporation of FeAlO3 into MgSiO3 perovskite on the post-perovskite transition. Geophys Res Lett 34:L12307

    Google Scholar 

  • Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Miner 34:679–686

    Google Scholar 

  • Niwa K, Miyajima N, Seto Y, Ohgushi K, Gotou H, Yagi T (2012) In situ observation of shear stress-induced perovskite to post-perovskite phase transition in CaIrO3 and the development of its deformation texture in a diamond-anvil cell up to 30 GPa. Phys Earth Planet Inter 194:10–17

    Google Scholar 

  • Nowacki A, Wookey J, Kendall J- (2010) Deformation of the lowermost mantle from seismic anisotropy. Nature 467:1091–1095

    Google Scholar 

  • Nowacki A, Wookey J, Kendall J- (2011) New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. J Geodyn 52:205–228

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448

    Google Scholar 

  • Oganov A, Ono S (2005) The high-pressure phase of alumina and implications for Earth’s D″layer. Proc Natl Acad Sci USA 102:10828–10831

    Google Scholar 

  • Oganov AR, Brodholt JP, Price GD (2002) Ab initio theory of phase transitions and thermoelasticity of minerals. In: Gramaccioli CM (ed) Energy modelling in minerals, vol 4, pp 83–170

    Google Scholar 

  • Ohta K, Hirose K, Sata N, Ohishi Y (2006) The sharpness and compositional effects on post-perovskite phase transition. Geochim Cosmochim, Acta 70

    Google Scholar 

  • Ohta K, Hirose K, Lay T, Sata N, Ohishi Y (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core-mantle boundary. Earth Planet Sci Lett 267:107–117

    Google Scholar 

  • Okada T, Yagi T, Niwa K, Kikegawa T (2010) Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys Earth Planet Inter 180:195–202

    Google Scholar 

  • Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett 236

    Google Scholar 

  • Panning M, Romanowicz B (2004) Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science 303:351–353

    Google Scholar 

  • Panning M, Romanowicz B (2006) A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167:361–379

    Google Scholar 

  • Reasoner C, Revenaugh J (1999) Short-period P wave constraints on D″ reflectivity. J Geophys Res Solid Earth 104:955–961

    Google Scholar 

  • Ricard Y, Mattern E, Matas J (2005) Synthetic tomographic images of slabs from mineral physics. In: van der Hilst RD, Bass Jay D, Matas Jan, Trampert J (eds) Earth’s deep mantle: structure, composition and evolution, vol 160. American Geophysical Union, Washington D.C., pp 285–302

    Google Scholar 

  • Ringwood AE (1962) Model for upper mantle. J Geophys Res 67

    Google Scholar 

  • Ritsema J, van Heijst HJ (2002) Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes. Geophys J Int 149:482–489

    Google Scholar 

  • Rokosky JM, Lay T, Garnero EJ (2006) Small-scale lateral variations in azimuthally anisotropic D″ structure beneath the Cocos plate. Earth Planet Sci Lett 248:411–425

    Google Scholar 

  • Ross M, Mao HK, Bell PM, Xu JA (1986) The equation of state of dense argon—a comparison of shock and static studies. J Chem Phys 85:1028–1033

    Google Scholar 

  • Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophys 40:1008

    Google Scholar 

  • Russell S, Reasoner C, Lay T, Revenaugh J (2001) Coexisting shear- and compressional-wave seismic velocity discontinuities beneath the central Pacific. Geophys Res Lett 28:2281–2284

    Google Scholar 

  • Sata N, Shen G, Rivers M, Sutton S (2002) Pressure-volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104114

    Google Scholar 

  • Saxena S, Dubrovinsky L, Lazor P, Cerenius Y, Haggkvist P, Hanfland M, Hu J (1996) Stability of perovskite (MgSiO3) in the Earth’s mantle. Science 274:1357–1359

    Google Scholar 

  • Saxena S, Dubrovinsky L, Lazor P, Hu J (1998) In situ X-ray study of perovskite (MgSiO3): phase transition and dissociation at mantle conditions. Eur J Mineral 10:1275–1281

    Google Scholar 

  • Scherbaum F, Kruger F, Weber M (1997) Double beam imaging: mapping lower mantle heterogeneities using combinations of source and receiver arrays. J Geophys Res Solid Earth 102:507–522

    Google Scholar 

  • Schweitzer J, Fyen J, Mykkeltveit S, Kvaerna T (2002) Seismic arrays (Chap. 9). In: Bormann P (ed) IASPEI new manual of seismological observatory practice. GeoForschungszentrum, Potsdam

    Google Scholar 

  • Shieh S, Duffy T, Kubo A, Shen G, Prakapenka V, Sata N, Hirose K, Ohishi Y (2006) Equation of state of the postperovskite phase synthesized from a natural (Mg, Fe)SiO3 orthopyroxene. Proc Natl Acad Sci USA 103:3039–3043

    Google Scholar 

  • Shieh SR, Dorfman SM, Kubo A, Prakapenka VB, Duffy TS (2011) Synthesis and equation of state of post-perovskites in the (Mg, Fe)(3)Al2Si3O12 system. Earth Planet Sci Lett 312:422–428

    Google Scholar 

  • Shim S, Duffy T, Kenichi T (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739

    Google Scholar 

  • Shim SH, Duffy TS, Jeanloz R, Shen G (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603

    Google Scholar 

  • Sidorin I, Gurnis M, Helmberger D, Ding X (1998) Interpreting D″ seismic structure using synthetic waveforms computed from dynamic models. Earth Planet Sci Lett 163:31–41

    Google Scholar 

  • Sidorin I, Gurnis M, Helmberger D (1999a) Dynamics of a phase change at the base of the mantle consistent with seismological observations. J Geophys Res Solid Earth 104:15005–15023

    Google Scholar 

  • Sidorin I, Gurnis M, Helmberger D (1999b) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286:1326–1331

    Google Scholar 

  • Sinmyo R, Hirose K, Muto S, Ohishi Y, Yasuhara A (2011) The valence state and partitioning of iron in the Earth’s lowermost mantle. J Geophy Res Solid Earth 116:B07205

    Google Scholar 

  • Sparks DN (1973) Euclidean cluster analysis. J R Stat Soc Ser C Appl Stat 126–130

    Google Scholar 

  • Speziale S, Zha C, Duffy T, Hemley R, Mao H (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state. J Geophys Res Solid Earth 106:515–528

    Google Scholar 

  • Stackhouse S, Brodholt JP (2007) High-temperature elasticity of MgSiO3 post-perovskite. In: Hirose K, Brodholt JP, Lay T, Yuen D (eds) Post-perovskite: the last mantle phase transition, vol 174. American Geophysical Union, Washington D.C., pp 99–113

    Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2005a) High temperature elastic anisotropy of the perovskite and post-perovskite Al(2)O(3). Geophys Res Lett 32:L13305

    Google Scholar 

  • Stackhouse S, Brodholt JP, Wookey J, Kendall JM, Price GD (2005b) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10

    Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2006) Elastic anisotropy of FeSiO(3) end-members of the perovskite and post-perovskite phases. Geophys Res Lett 33:L01304

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—I. Physical properties. Geophys J Int 162:610–632

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213

    Google Scholar 

  • Sun D, Helmberger D (2008) Lower mantle tomography and phase change mapping. J Geophy Res Solid Earth 113:B10305

    Google Scholar 

  • Sun DY, Song TRA, Helmberger D (2006) Complexity of D″ in the presence of slab-debris and phase changes. Geophys Res Lett 33:L12S07

    Google Scholar 

  • Sun D, Helmberger D, Song X, Grand SP (2007) Predicting a global perovskite and post-perovskite phase boundary. In: Hirose K, Brodholt J, Lay T, Yuen D (eds) Post-perovskite: the last mantle phase transition, vol 174. American Geophysical Union, Washington D.C., pp 155–170

    Google Scholar 

  • Tackley PJ (2011) Living dead slabs in 3-D: the dynamics of compositionally-stratified slabs entering a “slab graveyarD″ above the core-mantle boundary. Phys Earth Planet Inter 188:150–162

    Google Scholar 

  • Tackley PJ (2012) Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci Rev 110:1–25

    Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 Gpa—implications on the origin of peridotitic upper mantle. J Geophy Res Solid Earth Planets 91:9367–9382

    Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2005) Phase relations in Mg3Al2Si3O12 to 180 GPa: effect of Al on post-perovskite phase transition. Geophys Res Lett 32:L15306

    Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2007) Solubility of FeO in (Mg, Fe)SiO3 perovskite and the post-perovskite phase transition. Phys Earth Planet Inter 160:319–325

    Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet, Sci Lett 277

    Google Scholar 

  • Thomas C, Weber M (1997) P velocity heterogeneities in the lower mantle determined with the German regional seismic network. Improvement of previous models and results of 2D modelling. Phys Earth Planet Inter 101:105–117

    Google Scholar 

  • Thomas C, Weber M, Wicks C, Scherbaum F (1999) Small scatterers in the lower mantle observed at German broadband arrays. J Geophys Res Solid Earth 104:15073–15088

    Google Scholar 

  • Thomas C, Kendall J-, Weber M (2002) The lowermost mantle beneath northern Asia? I. Multi-azimuth studies of a D″ heterogeneity. Geophys J Int 151:279–295

    Google Scholar 

  • Thomas C, Garnero EJ, Lay T (2004a) High-resolution imaging of lowermost mantle structure under the Cocos plate. J Geophys Res Solid Earth 109:B08307

    Google Scholar 

  • Thomas C, Kendall JM, Lowman J (2004b) Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet Sci Lett 225:105–113

    Google Scholar 

  • Thomas C, Wookey J, Simpson M (2007) D″ anisotropy beneath Southeast Asia. Geophys Res Lett 34:L04301

    Google Scholar 

  • Thomas C, Wookey J, Brodholt J, Fieseler T (2011) Anisotropy as cause for polarity reversals of D″ reflections. Earth Planet Sci Lett 307:369–376

    Google Scholar 

  • Thorne MS, Lay T, Garnero EJ, Jahnke G, Igel H (2007) Seismic imaging of the laterally varying D″ region beneath the Cocos plate. Geophys J Int 170:635–648

    Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res Solid Earth 108:2462

    Google Scholar 

  • Tsuchiya T, Tsuchiya J (2006) Effect of impurity on the elasticity of perovskite and postperovskite: velocity contrast across the postperovskite transition in (Mg, Fe, Al)(Si, Al)O3. Geophys Res Lett 33:L12S04

    Google Scholar 

  • Tsuchiya J, Tsuchiya T (2008) Postperovskite phase equilibria in the MgSiO3-Al2O3 system. Proc Natl Acad Sci USA 105:19160–19164

    Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch R (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Google Scholar 

  • Usui Y, Hiramatsu Y, Furumoto M, Kanao M (2005) Thick and anisotropic D″ layer beneath Antarctic Ocean. Geophys Res Lett 32:L13311

    Google Scholar 

  • van der Hilst RD, de Hoop MV, Wang P, Shim S-, Ma P, Tenorio L (2007) Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region. Science 315:1813–1817

    Google Scholar 

  • Wallace M, Thomas C (2005) Investigating D″ structure beneath the North Atlantic. Phys Earth Planet Inter 151:115–127

    Google Scholar 

  • Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34:L08306

    Google Scholar 

  • Walte NP, Heidelbach F, Miyajima N, Frost DJ, Rubie DC, Dobson DP (2009) Transformation textures in post-perovskite: understanding mantle flow in the D″ layer of the Earth. Geophys Res Lett 36:L04302

    Google Scholar 

  • Wang YB, Guyot F, Yeganehhaeri A, Liebermann RC (1990) Twinning in Mgsio3 perovskite. Science 248:468–471

    Google Scholar 

  • Weber M (1993) P-wave and S-wave reflections from anomalies in the lowermost mantle. Geophys J Int 115:183–210

    Google Scholar 

  • Weber M, Davis JP (1990) Evidence of a laterally variable lower mantle structure from P-waves and S-waves. Geophys J Int 102

    Google Scholar 

  • Weber M, Kornig M (1990) Lower mantle inhomogeneities inferred from PcP precursors. Geophys Res Lett 17:1993–1996

    Google Scholar 

  • Weber M, Wicks C (1996) Reflections from a distant subduction zone. Geophys Res Lett 23:1453–1456

    Google Scholar 

  • Weber M, Davis JP, Thomas C, Krüger F, Scherbaum F, Schlittenhardt J, Körnig M (1996) The structure of the lowermost mantle as determined from using seismic arrays. In: Boschi E, Ekström Göran, Morelli A (eds) Seismic modelling of the Earth’s structure. Instituto Nazionale di Geophysica, Rome, pp 399–442

    Google Scholar 

  • Wentzcovitch RM, Tsuchiya T, Tsuchiya J (2006) MgSiO(3) postperovskite at D″ conditions. Proc Natl Acad Sci USA 103:543–546

    Google Scholar 

  • Wolf GH, Bukowinski ST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnani Murli H, Syono Y (eds) High-pressure research in mineral physics. American Geophysical Union, Washington, D.C., pp 313–331

    Google Scholar 

  • Wookey J, Kendall JM (2007) Seismic anisotropy of post-perovskite and the lowermost mantle. In: Hirose Kei, Brodholt John, Lay Thorne, Yuen David (eds) Post-perovskite: the last mantle phase transition. American Geophysical Union, Washington, D.C., pp 171–189

    Google Scholar 

  • Wookey J, Kendall J- (2008) Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth Planet Sci Lett 275:32–42

    Google Scholar 

  • Wookey J, Kendall JM, Rumpker G (2005a) Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting. Geophys J Int 161:829–838

    Google Scholar 

  • Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price GD (2005b) Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438:1004–1007

    Google Scholar 

  • Wysession ME, Lay T, Revenaugh J, Williams Q, Garnero EJ, Jeanloz R, Kellog LH (1998) The D″ discontinuity and its implications. In: Gurnis M, Wysession ME, Knittle E, Buffet BA (eds) The core-mantle boundary region, vol 28. American Geophysical Union, Washing D.C., pp 273–298

    Google Scholar 

  • Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79

    Google Scholar 

  • Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378

    Google Scholar 

  • Young CJ, Lay T (1990) Multiple phase-analysis of the shear velocity structure in the D region beneath Alaska. J Geophys Res Solid Earth Planets 95

    Google Scholar 

  • Zha C, Bassett W, Shim S (2004) Rhenium, an in situ pressure calibrant for internally heated diamond anvil cells. Rev Sci Instrum 75:2409–2418

    Google Scholar 

  • Zhang F, Oganov AR (2006) Mechanisms of Al3+ incorporation in MgSiO3 post-perovskite at high pressures. Earth Planet Sci Lett 248:69–76

    Google Scholar 

Download references

Acknowledgments

The authors thank Nobuaki Fuji and Frédéric Deschamps for helpful comments which improved the manuscript. This work was partially funded by the DFG (German Research Foundation) on grant number TH1530/5-1 and the NWO (Dutch Science Foundation) on grant number NWO: VIDI 864.11.008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cobden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cobden, L., Thomas, C., Trampert, J. (2015). Seismic Detection of Post-perovskite Inside the Earth. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_13

Download citation

Publish with us

Policies and ethics