Skip to main content

Next-Generation Sequencing Applications in Head and Neck Oncology

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2

Abstract

Head and neck cancer remains a major medical problem with significant morbidity, mortality and quality of life issues. Over the recent past there has been an increase in incidence, a shift in etiological factors, a growing proportion of tumours in younger cohorts, and a greater realisation of the heterogeneity of this group of tumours particularly within head and neck squamous cell carcinomas.

The arrival of high-throughput massively parallel sequencing technologies in diagnostic laboratories heralds an opportunity for uncovering driver mutations in head and neck cancer, understanding of disease stratification, personalisation of treatment strategies within the framework of genomic medicine, and discovery of potential druggable targets for disease-specific treatment.

Next-generation sequencing (NGS) is a powerful tool and has the potential to transform the reactive and treatment-based nature of cancer care, to actively predict the risk for disease and aim to prevent it. The underlying goal of NGS application is to achieve the concept of “genome-informed personalised medicine”. An important factor in harnessing NGS technologies in personalised management of head and neck oncology lies in the feedback between scientists and clinicians involved in cancer care. A genuine diagnosis and appropriate aetiology-matched treatment is only possible if our decisions are based on both the genotype and phenotype of our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    PubMed  Google Scholar 

  2. Australian Institute of Health and Welfare. Australian Cancer Incidence and Mortality (ACIM). Head and neck for Australia. Canberra ACT: Australian Institute of Health and Welfare; 2014.

    Google Scholar 

  3. Farah C, Simanovic B, Dost F. Oral cancer in Australia 1982-2008: a growing need for opportunistic screening and prevention. Aust Dent J. 2014;59:349–59.

    CAS  PubMed  Google Scholar 

  4. Hashibe M, Brennan P, Benhamou S, Castellsague X, Chen C, Curado MP, Maso LD, Daudt AW, Fabianova E, Wünsch-Filho V, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the international head and neck cancer epidemiology consortium. J Natl Cancer Inst. 2007;99(10):777–89.

    PubMed  Google Scholar 

  5. Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5(5):489–500.

    CAS  PubMed  Google Scholar 

  6. Dahlstrom KR, Little JA, Zafereo ME, Lung M, Wei Q, Sturgis EM. Squamous cell carcinoma of the head and neck in never smoker-never drinkers: a descriptive epidemiologic study. Head Neck. 2008;30(1):75–84.

    PubMed  Google Scholar 

  7. Liang XH, Lewis J, Foote R, Smith D, Kademani D. Prevalence and significance of human papillomavirus in oral tongue cancer: the mayo clinic experience. J Oral Maxillofac Surg. 2008;66(9):1875–80.

    PubMed  Google Scholar 

  8. Baxi S, Fury M, Ganly I, Rao S, Pfister DG. Ten years of progress in head and neck cancers. J Natl Compr Canc Netw. 2012;10(7):806–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tezal M. Interaction between chronic inflammation and oral HPV infection in the etiology of head and neck cancers. Int J Otolaryngol. 2012;2012:1–9.

    Google Scholar 

  10. Kansy K, Thiele O, Freier K. The role of human papillomavirus in oral squamous cell carcinoma: myth and reality. Oral Maxillofac Surg. 2012;18(2):165–72. Epub 16 Dec 2012.

    PubMed  Google Scholar 

  11. Tang AL, Owen JH, Hauff SJ, Park JJ, Papagerakis S, Bradford CR, Carey TE, Prince ME. Head and neck cancer stem cells: the effect of HPV–an in vitro and mouse Study. Otolaryngol Head Neck Surg. 2013;149(2):252–60.

    PubMed  PubMed Central  Google Scholar 

  12. Feller L, Lemmer J. Oral leukoplakia as it relates to HPV infection: a review. Int J Dent. 2012;2012:1–7.

    Google Scholar 

  13. Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009;15(22):6758–62.

    CAS  PubMed  Google Scholar 

  14. Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, Porcher JC, Özsan N, Wieben ED, Eckloff BW, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010;465(7297):473–7.

    CAS  PubMed  Google Scholar 

  18. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463(7278):184–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Field JK, Spandidos DA, Malliri A, Gosney JR, Yiagnisis M, Stell PM. Elevated P53 expression correlates with a history of heavy smoking in squamous cell carcinoma of the head and neck. Br J Cancer. 1991;64(3):573–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ögmundsdóttir HM, Hilmarsdóttir H, Björnsson J, Holbrook WP. Longitudinal study of TP53 mutations in eight patients with potentially malignant oral mucosal disorders. J Oral Pathol Med. 2009;38(9):716–21.

    PubMed  Google Scholar 

  21. Tokman B, Gultekin SE, Sezer C, Alpar R. The expression of p53, p16 proteins and prevalence of apoptosis in oral squamous cell carcinoma. Correlation with mode of invasion grading system. Saudi Med J. 2004;25(12):1922–30.

    PubMed  Google Scholar 

  22. Snyder LA, Bertone ER, Jakowski RM, Dooner MS, Jennings-Ritchie J, Moore AS. p53 expression and environmental tobacco smoke exposure in feline oral squamous cell carcinoma. Vet Pathol. 2004;41(3):209–14.

    CAS  PubMed  Google Scholar 

  23. Simionescu C, Margaritescu C, Georgescu CV, Surpaţeanu M. HPV and p53 expression in dysplastic lesions and squamous carcinomas of the oral mucosa. Rom J Morphol Embryol. 2005;46(2):155–9.

    PubMed  Google Scholar 

  24. O’Regan EM, Toner ME, Finn SP, Fan CY, Ring M, Hagmar B, Timon C, Smyth P, Cahill S, Flavin R, et al. p16INK4A genetic and epigenetic profiles differ in relation to age and site in head and neck squamous cell carcinomas. Hum Pathol. 2008;39(3):452–8.

    PubMed  Google Scholar 

  25. Qiu W, Schonleben F, Li X, Ho DJ, Close LG, Manolidis S, Bennett BP, Su GH. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(5):1441–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L, Fu L. Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep. 2010;23(3):671–6.

    CAS  PubMed  Google Scholar 

  27. Brakenhoff RH. Another NOTCH for cancer. Science. 2011;333(6046):1102–3.

    CAS  PubMed  Google Scholar 

  28. Song X, Xia R, Li J, Long Z, Ren H, Chen W, Mao L. Common and complex notch1 mutations in Chinese oral squamous cell carcinoma. Clin Cancer Res. 2014;20(3):701–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaykalova DA, Mambo E, Choudhary A, Houghton J, Buddavarapu K, Sanford T, Darden W, Adai A, Hadd A, Latham G, et al. Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One. 2014;9(3):e93102.

    PubMed  PubMed Central  Google Scholar 

  30. Kulasinghe A, Perry C, Jovanovic L, Nelson C, Punyadeera C (2014) Circulating Tumour Cells in Metastatic Head and Neck Cancers. Int J Cancer. 2014 Aug 1. doi: 10.1002/ijc.29108.

  31. Berger MF. Harnessing massively parallel DNA sequencing for the personalization of cancer management. Pers Med. 2013;10(2):183–90.

    CAS  Google Scholar 

  32. Mardis ER. Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol. 2012;9(8):477–86.

    CAS  PubMed  Google Scholar 

  33. Jones SJM, Laskin J, Li YY, Griffith OL, An J, Bilenky M, Butterfield YS, Cezard T, Chuah E, Corbett R, et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 2010;11(8):R82.

    PubMed  PubMed Central  Google Scholar 

  34. Guo G, Gui Y, Gao S, Tang A, Hu X, Huang Y, Jia W, Li Z, He M, Sun L, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 2012;44(1):17–9.

    CAS  Google Scholar 

  35. Salleh MZ, Teh LK, Lee LS, Ismet RI, Patowary A, Joshi K, Pasha A, Ahmed AZ, Janor RM, Hamzah AS, et al. Systematic pharmacogenomics analysis of a Malay whole genome: proof of concept for personalized medicine. PLoS One. 2013;8(8):e71554.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McWhinney SR, McLeod HL. Using germline genotype in cancer pharmacogenetic studies. Pharmacogenomics. 2009;10(3):489–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    CAS  PubMed  Google Scholar 

  38. Brownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, Flannery KC, Dechene ET, Towne MC, Savage SK, Price EN, et al. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biol. 2014;15(3):R53.

    PubMed  PubMed Central  Google Scholar 

  39. Salto-Tellez M, Gonzalez de Castro D. Next generation sequencing: a change of paradigm in molecular diagnostic validation. J Pathol. 2014;234(1):5–10.

    PubMed  Google Scholar 

  40. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011;29(10):908–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet. 2014;15(8):556–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC bioinformatics. 2013;14:189.

    PubMed  PubMed Central  Google Scholar 

  43. Goode DL, Hunter SM, Doyle MA, Ma T, Rowley SM, Choong D, Ryland GL, Campbell IG. A simple consensus approach improves somatic mutation prediction accuracy. Genome med. 2013;5(9):90.

    PubMed  PubMed Central  Google Scholar 

  44. Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013;12(5):358–69.

    CAS  PubMed  Google Scholar 

  45. Jessri M, Farah CS. Next generation sequencing and its application in deciphering head and neck cancer. Oral Oncol. 2014;50(4):247–53.

    CAS  PubMed  Google Scholar 

  46. Jessri M, Farah CS. Harnessing massively parallel sequencing in personalized head and neck oncology. J Dent Res. 2014;93(5):437–44.

    CAS  PubMed  Google Scholar 

  47. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1(9):727–30.

    CAS  PubMed  Google Scholar 

  48. Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today. 2005;10(23–24):1607–10.

    PubMed  Google Scholar 

  49. Stratton M. Evolution of the cancer genome. J Med Genet. 2011;48:S43.

    Google Scholar 

  50. Wong KM, Hudson TJ, McPherson JD. Unraveling the genetics of cancer: genome sequencing and beyond. Annu Rev Genomics Hum Genet. 2011;12:407–30.

    CAS  PubMed  Google Scholar 

  51. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463(7278):191–U173.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  53. Dancey JE, Bedard PL, Onetto N, Hudson TJ. The genetic basis for cancer treatment decisions. Cell. 2012;148(3):409–20.

    CAS  PubMed  Google Scholar 

  54. Desmedt C, Voet T, Sotiriou C, Campbell PJ. Next-generation sequencing in breast cancer: first take home messages. Curr Opin Oncol. 2012;24(6):597–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mwenifumbo JC, Marra MA. Cancer genome-sequencing study design. Nat Rev Genet. 2013;14(5):321–32.

    CAS  PubMed  Google Scholar 

  56. Mills GB. An emerging toolkit for targeted cancer therapies. Genome Res. 2012;22(2):177–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.

    CAS  PubMed  Google Scholar 

  58. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    CAS  PubMed  Google Scholar 

  59. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    CAS  PubMed  Google Scholar 

  60. Samuels Y, Wang ZH, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell DM, Riggins GJ, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    CAS  PubMed  Google Scholar 

  61. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O’Meara S, Smith R, Parker A, et al. Intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431(7008):525–6.

    CAS  PubMed  Google Scholar 

  62. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, Boggon TJ, Wlodarska L, Clark JJ, Moore S, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    CAS  PubMed  Google Scholar 

  63. Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA, Vogelstein B, et al. Frequent mutations of chromatin remodeling gene arid1a in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, MacConaill LE, Hahn WC, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29(22):3085–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–U370.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nazarian R, Shi HB, Wang Q, Kong XJ, Koya RC, Lee H, Chen ZG, Lee MK, Attar N, Sazegar H, et al. Melanomas acquire resistance toB-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–U377.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu XW, Gimotty PA, Kee D, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaur H, Mao SH, Shah S, Gorski DH, Krawetz SA, Sloane BF, Mattingly RR. Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Rev Mol Diagn. 2013;13(2):151–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou LH, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao YJ, Turashvili G, Ding JR, Tse K, Haffari G, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    CAS  PubMed  Google Scholar 

  71. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.

    CAS  PubMed  Google Scholar 

  73. Berenson JR, Yang J, Mickel RA. Frequent amplification of the Bcl-1 locus in head and neck squamous-cell carcinomas. Oncogene. 1989;4(9):1111–6.

    CAS  PubMed  Google Scholar 

  74. Loyo M, Li RJ, Bettegowda C, Pickering CR, Frederick MJ, Myers JN, Agrawal N. Lessons learned from next-generation sequencing in head and neck cancer. Head Neck. 2013;35(3):454–63.

    PubMed  PubMed Central  Google Scholar 

  75. Dotto GP. Notch tumor suppressor function. Oncogene. 2008;27(38):5115–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mahjabeen I, Masood N, Baig RM, Sabir M, Inayat U, Malik FA, Kayani MA. Novel mutations of OGG1 base excision repair pathway gene in laryngeal cancer patients. Fam Cancer. 2012;11(4):587–93.

    CAS  PubMed  Google Scholar 

  77. Scheckenbach K, Baldus SE, Balz V, Freund M, Pakropa P, Sproll C, Schafer KL, Wagenmann M, Schipper J, Hanenberg H. RAD51C–a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC). Oral Oncol. 2014;50(3):196–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Laborde RR, Wang VW, Smith TM, Olson NE, Olsen SM, Garcia JJ, Olsen KD, Moore EJ, Kasperbauer JL, Tombers NM, et al. Transcriptional profiling by sequencing of oropharyngeal cancer. Mayo Clin Proc. 2012;87(3):226–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–65.

    CAS  PubMed  Google Scholar 

  80. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu SJ, Dia EQ, Lu KV, Yoshimoto K, Huang JHY, Chute DJ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    CAS  PubMed  Google Scholar 

  81. Yarden Y. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37:S3–8.

    CAS  PubMed  Google Scholar 

  82. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.

    CAS  PubMed  Google Scholar 

  83. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors (vol 5, pg 341, 2005). Nat Rev Cancer. 2005;5(7):341–54.

    CAS  PubMed  Google Scholar 

  84. Ziogas DE, Katsios CS, Tzaphlidou M, Roukos DH. Targeted therapy: overcoming drug resistance with clinical cancer genome. Expert Rev Anticancer Ther. 2012;12(7):861–4.

    CAS  PubMed  Google Scholar 

  85. Ross JS, Torres-Mora J, Wagle N, Jennings TA, Jones DM. Biomarker-based prediction of response to therapy for colorectal cancer: current perspective. Am J Clin Pathol. 2010;134(3):478–90.

    PubMed  Google Scholar 

  86. Rodenhuis S, Slebos RJC, Boot AJM, Evers SG, Mooi WJ, Wagenaar SS, Vanbodegom PC, Bos JL. Incidence and possible clinical significance of K-Ras oncogene activation in adenocarcinoma of the human lung. Cancer Res. 1988;48(20):5738–41.

    CAS  PubMed  Google Scholar 

  87. Ahrendt SA, Decker PA, Alawi EA, Zhu YR, Sanchez-Cespedes M, Yang SC, Haasler GB, Kajdacsy-Balla A, Demeure MJ, Sidransky D. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer. 2001;92(6):1525–30.

    CAS  PubMed  Google Scholar 

  88. Pao W, Wang TY, Riely GJ, Miller VA, Pan QL, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2(1):57–61.

    CAS  Google Scholar 

  89. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19(3):508–15.

    PubMed  Google Scholar 

  90. Engelman JA, Zejnullahu K, Mitsudomi T, Song YC, Hyland C, Park JO, Lindeman N, Gale CM, Zhao XJ, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    CAS  PubMed  Google Scholar 

  91. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sieben NLG, Macropoulos P, Roemen GM, Kolkman-Uljee SM, Fleuren GJ, Houmadi R, Diss T, Warren B, Al Adnani M, de Goeij AP, et al. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 2004;202(3):336–40.

    CAS  PubMed  Google Scholar 

  93. Bang YJ, Van Cutsem E, Feyereislova A, Investigators TT. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (TOGA): a phase 3, open-label, randomised controlled trial (vol 376, pg 687, 2010). Lancet. 2010;376(9749):1302.

    Google Scholar 

  94. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283–90.

    CAS  PubMed  Google Scholar 

  95. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, Berek JS, Chapman JA, DiSilvestro PA, Horowitz IR, et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2010;116(1):15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fang WJ, Radovich M, Zhou AW, Zheng YL, Zhao P, Huang WY, Mao CY, Zheng Y, Jia YK, Zheng SS. “Druggable” alterations detected by Ion Torrent in metastasis colorectal cancer patients. Oncol Lett. 2014;7(6):1761–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ciardiello F, Tortora G. Drug therapy: EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.

    CAS  PubMed  Google Scholar 

  98. Sok JC, Coppelli FM, Thomas SM, Lango MN, Xi SC, Hunt JL, Freilino ML, Graner MW, Wikstrand CJ, Bigner DD, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12(17):5064–73.

    CAS  PubMed  Google Scholar 

  99. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex-formation of human papillomavirus-E7 proteins with the retinoblastoma tumor suppressor gene-product. Embo J. 1989;8(13):4099–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoellein A, Pickhard A, von Keitz F, Schoeffmann S, Piontek G, Rudelius M, Baumgart A, Wagenpfeil S, Peschel C, Dechow T, et al. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck. Oncotarget. 2011;2(8):599–609.

    PubMed  PubMed Central  Google Scholar 

  102. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, Gondi V, Hsu KT, Harari PM. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27(28):3944–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang JJ, Baran J, Cros A, Guberman JM, Haider S, Hsu J, Liang Y, Rivkin E, Wang JX, Whitty B, et al. International cancer genome consortium data portal—a one-stop shop for cancer genomics data. Database-Oxford. 2011;2011:bar026.

    PubMed  PubMed Central  Google Scholar 

  104. Kaye J, Boddington P, De Vries J, Hawkins N, Melham K. Ethical implications of the use of whole genome methods in medical research. Eur J Hum Genet. 2010;18(4):398–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wolf SM, Crock BN, Van Ness B, Lawrenz F, Kahn JP, Beskow LM, Cho MK, Christman MF, Green RC, Hall R, et al. Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genet Med. 2012;14(4):361–84.

    PubMed  PubMed Central  Google Scholar 

  106. Clayton EW. Incidental findings in genetics research using archived DNA. J Law Med Ethics. 2008;36(2):286–91.

    PubMed  PubMed Central  Google Scholar 

  107. Zonta MA, Monteiro J, Santos Jr G, Pignatari ACC. Oral infection by the human papilloma virus in women with cervical lesions at a prison in São Paulo Brazil. Braz J Otorhinolaryngol. 2012;78(2):66–72.

    PubMed  Google Scholar 

  108. Farah CS, Bhatia N, John K, Lee BW. Minimum intervention dentistry in oral medicine. Aust Dent J. 2013;58(Suppl1):85–94.

    PubMed  Google Scholar 

  109. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    CAS  PubMed  Google Scholar 

  110. Garcia I, Kuska R, Somerman MJ. Expanding the foundation for personalized medicine: implications and challenges for dentistry. J Dent Res. 2013;92(7 Suppl):S3–10.

    Google Scholar 

  111. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science. 2002;298(5602):2381–5.

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

The authors have no conflict of interest to declare in relation to the work presented in this chapter. The authors are undertaking next-generation sequencing of oral cancer and oral potentially malignant lesions utilising SOLiD™ and Ion™ technologies, funded by grants held by author Camile S Farah awarded by the Queensland Government Smart Futures Co-Investment Fund and Cancer Australia, in collaboration with Life Technologies and Agilent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camile S. Farah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farah, C.S., Jessri, M., Kordbacheh, F., Bennett, N.C., Dalley, A. (2015). Next-Generation Sequencing Applications in Head and Neck Oncology. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_23

Download citation

Publish with us

Policies and ethics