Skip to main content

Assessment of Carbon Emissions Quotas with the Integrated TIMES and MERGE Model

  • Chapter
  • First Online:
Informing Energy and Climate Policies Using Energy Systems Models

Part of the book series: Lecture Notes in Energy ((LNEN,volume 30))

Abstract

The success of climate change mitigation depends on the modalities for the extension of the Kyoto protocol after 2020. This refers to the appropriate level of GHG reduction imposed as emissions quotas in line with the 2 °C commitment. We perform a parametric analysis where increasingly stringent cumulative and global emission quota bounds are applied using the integrated TIMES and MERGE model (ITMM). The model integrates in one set of equations two hybrid top-down and bottom-up models both able to analyze technological change. The study assumes efficient policies and measures where all world regions accept a binding protocol in 2020 while mitigation policies will start already in 2015. However, this early introduction of efficient policies needs capital transfers for a fair burden sharing in favor of countries with low income and in that sense the model assumptions are critical. Marginal cost of carbon control of these optimistic policies are high (600–1000 $/t of carbon by 2050) but global GDP losses remain moderate and below 1.5 % per year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barreto L, Kypreos S (2004) Emissions trading and technology deployment in an energy-systems “bottom-up” model with technology learning. Eur J Oper Res 158(1):243–261. doi:10.1016/S0377-2217(03)00350-3

    Article  MATH  MathSciNet  Google Scholar 

  • Bosseti V, Paltzev S, Reilly J, Carraro P (2011) Emissions pricing to stabilize global climate. FEEM Nota di Lavoro 80:2011

    Google Scholar 

  • Den Elzen M, van Vuuren D, van Vliet J (2010) Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Clim Change 99:313–320. doi:10.1007/s10584-010-9798-5

    Article  Google Scholar 

  • Den Elzen M et al (2011) The emissions gap between the Copenhagen pledges and the 2 °C climate goal: options for closing and risks that could widen the gap. Glob Environ Change 21(2):733–743

    Article  Google Scholar 

  • Edenhofer O et al (2010) The economics of low stabilisation: exploring its implications for mitigation costs and strategies. Energy Journal 31(1):11–48 ISSN: 0195-6574

    Google Scholar 

  • European Commission (2007) Communication from the commission to the council, the european parliament, the european economic and social committee and the committee of the regions—limiting global climate change to 2 degrees Celsius—the way ahead for 2020 and beyond COM (2007) 2

    Google Scholar 

  • Jacoby et al (2009) Sharing the burden of GHG reductions in post-Kyoto international climate policy. In: University Cambridge (ed) Aldy J, Stavins R. Press, Cambridge, pp 753–785

    Google Scholar 

  • Kypreos S (2007) A MERGE model with endogenous technological change and the cost of carbon stabilization. Energy Policy 35(11):5327–5336

    Article  Google Scholar 

  • Labriet M (2010) Private communication

    Google Scholar 

  • Loulou R, Labriet M (2008a) ETSAP-TIAM: the TIMES integrated assessment model. Part I: model structure. CMS 5(1):7–40

    Article  MATH  MathSciNet  Google Scholar 

  • Loulou R, Labriet M (2008b) ETSAP-TIAM: the TIMES integrated assessment model. Part II: mathematical formulation. CMS 5(1):41–66

    Article  MATH  Google Scholar 

  • Magné B, Kypreos S, Turton H (2010) Technology options for low stabilization pathways with MERGE. In: Edenhofer K, Leimbach B (eds) 31(Special Issue):83–107, ISSN: 0195-6574

    Google Scholar 

  • Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23(1):17–34

    Article  Google Scholar 

  • Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162. doi:10.1038/nature08017

    Article  Google Scholar 

  • Remme U, Blesl M (2006) Documentation of the TIMES-MACRO model. http://www.etsap.org

  • UN-FCCC/CP/2009/L.7, Copenhagen Accord, 18 Dec 2009

    Google Scholar 

  • Van Vuuren DPB, van Ruijven B et al (2006) TIMER 2: model description and application. Integrated modelling of global environmental change. In: An overview of IMAGE 2.4, Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands, pp 39–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Socrates Kypreos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kypreos, S., Lehtila, A. (2015). Assessment of Carbon Emissions Quotas with the Integrated TIMES and MERGE Model. In: Giannakidis, G., Labriet, M., Ó Gallachóir, B., Tosato, G. (eds) Informing Energy and Climate Policies Using Energy Systems Models. Lecture Notes in Energy, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-16540-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16540-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16539-4

  • Online ISBN: 978-3-319-16540-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics