Skip to main content

Potential of Converting Solar Energy to Electricity and Chemical Energy

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

  • 3156 Accesses

Abstract

Chemical energy can be produced from solar energy via photosynthesis. Solar energy can also be converted into electricity via photovoltaic devices. These two mechanisms would seem to compete for the same resources. However, due to differences in the spectral requirements, there is an opportunity to coproduce both electricity and chemical energy from a single facility. We propose to introduce an active filter or solar panel above a microalgae pond to generate both electricity and chemical energy. There are several advantages to such technology including reduced heating (saving freshwater) and an independent electricity supply. Additionally, by channeling targeted illumination back into the microalgae ponds, we can double the amount of light absorbed by the microalgae. This can result in increased biomass productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM (2008) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. vol G 173-03. ASTM, West Conshohocken, PA

    Google Scholar 

  • Beardall J, Stojkovic S, Larsen S (2009) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2:191–205

    Article  Google Scholar 

  • Borowitzka MA, Boruff BJ, Moheimani NR, Pauli N, Cao Y, Smith H (2012) Identification of the optimum sites for industrial-scale microalgae biofuel production in WA using a GIS model. Centre Res Energy Sustain Transp

    Google Scholar 

  • Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  Google Scholar 

  • Clifton J, Boruff BJ (2010) Assessing the potential for concentrated solar power development in rural Australia. Energy Policy 38:5272–5280

    Article  Google Scholar 

  • Cuevas A, Sinton RA, Kerr M, Macdonald D, Mackel H (2002) A contactless photoconductance technique to evaluate the quantum efficiency of solar cell emitters. Sol Energy Mater Sol Cells 71:295–312

    Article  Google Scholar 

  • de Boer K, Moheimani N, Borowitzka M, Bahri P (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol:1–18

    Google Scholar 

  • Djordjevic S, Parlevliet D, Jennings P (2014) Detectable faults on recently installed solar modules in Western Australia. Renew Energy 67:215–221

    Article  Google Scholar 

  • Fraunhofer (2012) Photovoltaics Report. http://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report.pdf. Accessed 1 July 2013

  • Frigaard N-U, Larsen KL, Cox RP (1996) Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol Ecol 20:69–77

    Article  Google Scholar 

  • Gardner NF, Muller GO, Shen YC, Chen G, Watanabe S, Gotz W, Krames MR (2007) Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm-2. Appl Phys Lett 91:243506

    Article  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 39). Prog Photovoltaics Res Appl 20:12–20

    Article  Google Scholar 

  • Gueymard CA, Myers D, Emery K (2002) Proposed reference irradiance spectra for solar energy systems testing. Sol Energy 73:443–467

    Article  Google Scholar 

  • Kim S-Y, Jeong W-I, Mayr C, Park Y-S, Kim K-H, Lee J-H, Moon C-K, Brütting W, Kim J-J (2013) Organic light-emitting diodes with 30 % external quantum efficiency based on a horizontally oriented emitter. Adv Funct Mater. doi:10.1002/adfm.201300104

    Google Scholar 

  • Krames MR, Ochiai-Holcomb M, Hofler GE, Carter-Coman C, Chen EI, Tan I-H, Grillot P, Gardner NF, Chui HC, Huang J-W, Stockman SA, Kish FA, Craford MG, Tan TS, Kocot CP, Hueschen M, Posselt J, Loh B, Sasser G, Collins D (1999a) High-power truncated-inverted-pyramid (AlxGa1 - x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50 % external quantum efficiency. Appl Phys Lett 75:2365–2367

    Article  Google Scholar 

  • Krames MR, Ochiai-Holcomb M, Hofler GE, Carter-Coman C, Chen EI, Tan IH, Grillot P, Gardner NF, Chui HC, Huang JW, Stockman SA, Kish FA, Craford MG, Tan TS, Kocot CP, Hueschen M, Posselt J, Loh B, Sasser G, Collins D (1999b) High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting ≫ 50 % external quantum efficiency. Appl Phys Lett 75:2365–2367

    Article  Google Scholar 

  • Lide DR (2005) Handbook of chemistry and physics. CRC, 86th edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • McEvoy A, Markvart T, Castaner L (2003) Practical handbook of photovoltaics: fundamentals and applications: fundamentals and applications. Elsevier Science, Amsterdam

    Google Scholar 

  • Meier J, Spitznagel J, Kroll U, Bucher C, Faÿ S, Moriarty T, Shah A (2004) Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films 451–452:518–524

    Google Scholar 

  • Messenger RA, Ventre J (2010) Photovoltaic systems engineering, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sustain Energy Rev 27:494–504

    Article  Google Scholar 

  • Neckel H, Labs D (1984) The solar radiation between 3300 and 12500 Ã…. Sol Phys 90(2):205–258

    Article  Google Scholar 

  • OECD/FAO (2012) OECD-FAO Agricultural outlook 2012–2021. http://dx.doi.org/10.1787/agr_outlook-2012-en

  • Parlevliet D, Moheimani N (2014) Efficient conversion of solar energy to biomass and electricity. Aquat Biosyst 10(1):4

    Article  Google Scholar 

  • Rosenberg V, Vasiliev M, Alameh K (2013) A spectrally selective panel. WO Patent 2,013,003,890

    Google Scholar 

  • Ruther R, Kleiss G, Reiche K (2002) Spectral effects on amorphous silicon solar module fill factors. Sol Energy Mater Sol Cells 71:375–385

    Article  Google Scholar 

  • Sark WGJHMv, Barnham KWJ, Slooff LH, Chatten AJ, Büchtemann A, Meyer A, McCormack SJ, Koole R, Farrell DJ, Bose R, Bende EE, Burgers AR, Budel T, Quilitz J, Kennedy M, Meyer T, Donegá CDM, Meijerink A, Vanmaekelbergh D (2008) Luminescent solar concentrators—a review of recent results. Opt Express 16:21773–21792

    Google Scholar 

  • Schnitzer I, Yablonovitch E, Caneau C, Gmitter TJ, Scherer A (1993) 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl Phys Lett 63:2174–2176

    Article  Google Scholar 

  • Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. doi:http://dx.doi.org/10.1016/j.enpol.2008.08.016

  • Shah AV, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J (2004) Thin-film silicon solar cell technology. Prog Photovoltaics Res Appl 12:113–142

    Article  Google Scholar 

  • Singh D, Jennings P (2007) The outlook for crystalline solar photovoltaic technology over the next decade. In: Jennings P, Ho G, Mathew K, Nayar CV (eds) Renewable energy for sustainable developement in the Asia Pacific Region, Fremantle, Western Australia. American Institute of Physics, p 102

    Google Scholar 

  • Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292–294

    Article  Google Scholar 

  • Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: Research and achievement. Renew Sustain Energy Rev 20:443–461

    Article  Google Scholar 

  • Wenham SR, Green MA, Watt ME (1994) Applied photovoltaics. Centre for Photovoltaic Devices and Systems, Sydney

    Google Scholar 

  • Wilson JIB (1980) Amorphous silicon. Sunworld 4(1):14–15

    Google Scholar 

  • Zhao J, Wang A, Altermatt PP, Wenham SR, Green MA (1996) 24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol Energy Mater Sol Cells 41–42:87–99

    Article  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Parlevliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parlevliet, D., Moheimani, N.R. (2015). Potential of Converting Solar Energy to Electricity and Chemical Energy. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics