Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 599))

  • 729 Accesses

Abstract

In the previous chapters, we have examined QCA-based designs of multi-bit adders and a multiplier. Adders and multipliers constitute basic arithmetic units and hence designs for these (along with ones for memory elements) take us closer towards QCA-based microprocessors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Wood, D. Tougaw, Matrix multiplication using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)

    Article  Google Scholar 

  2. L. Lu, W. Liu, M. O’Neill, E.E. Swartzlander, QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2013)

    Article  MathSciNet  Google Scholar 

  3. K.R. Castleman, Digital Image Processing (Prentice-Hall, New Jersey, 1996)

    Google Scholar 

  4. K.G. Beauchamp, Applications of Walsh and Related Functions (Academic Press, New York, 1984)

    Google Scholar 

  5. S.T. Wei, C.W. Tien, B.D. Liu, J.F. Yang, Adaptive truncation algorithm for Hadamard transformed H.264/AVC lossless video coding. IEEE Trans. Circuits Syst. Video Technol. 21(5), 538–549 (2011)

    Article  Google Scholar 

  6. J. Xiao, J. Yu, X. Li, Q. Tang, H. Chen, F. Li, Z. Cao, L. Chen, Hadamard transform combined with companding transform technique for PAPR reduction in an optical direct-detection OFDM system. IEEE/OSA J. Opt. Commun. Netw. 4(10), 709–714 (2012)

    Article  Google Scholar 

  7. V. Pudi, K. Sridharan, A bit-serial pipelined architecture for high-performance DHT computation in quantum dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi:10.1109/TVLSI.2014.2363519 (to appear)

  8. K. Walus, T. Dysart, G. Jullien, R. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)

    Article  Google Scholar 

  9. V. Pudi, K. Sridharan, Low complexity design of ripple carry and Brent-Kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sridharan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sridharan, K., Pudi, V. (2015). Discrete Hadamard Transform Computation in QCA. In: Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Studies in Computational Intelligence, vol 599. Springer, Cham. https://doi.org/10.1007/978-3-319-16688-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16688-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16687-2

  • Online ISBN: 978-3-319-16688-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics