Skip to main content

Aggregating Spatio-temporal Phenomena at Multiple Levels of Detail

  • Chapter
  • First Online:
AGILE 2015

Abstract

Spatio-temporal data are collected at high levels of detail (LoDs). Both spatial and temporal characteristics of data can be expressed at different LoDs. Depending on the phenomenon and the analytical goal, different LoDs can be suitable for a user’s analysis since different LoDs may provide different perceptions of a phenomenon. It is crucial to model spatio-temporal phenomena having in mind that different LoDs can be useful in their analyses. We propose a granularities-based model in order to model spatio-temporal phenomena at multiple LoDs. It defines the concept of LoD and afterwards the atom generalization, granular synthesis and compressed granular syntheses set concepts to express a phenomenon at some LoD into a coarser one. This occurs in a semi-automatic way as the user just needs to define functions that create the compressed granular syntheses sets. A demonstration case was conducted applied to a real dataset about accidents in USA in which the model proposed proved to be useful to reduce the amount and complexity of data when the phenomenon is observed at coarser LoDs than the ones at which data is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data are available at http://www.nhtsa.gov/FARS.

References

  • Andrienko, G., et al. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.

    Article  Google Scholar 

  • Belussi, A., Combi, C. & Pozzani, G., 2009. Formal and conceptual modeling of spatio-temporal granularities. In Proceedings of the 2009 International Database Engineering & Applications Symposium on—IDEAS ’09 (p. 275). New York, USA: ACM Press.

    Google Scholar 

  • Bertolotto, M., & Egenhofer, M. J. (2001). Progressive transmission of vector map data over the world wide web. GeoInformatica, 5(4), 345–373.

    Article  Google Scholar 

  • Bettini, C., Jajodia, S., & Wang, S. (2000). Time granularities in databases, data mining, and temporal reasoning. Berlin: Springer.

    Google Scholar 

  • Camossi, E., Bertolotto, M., & Bertino, E. (2006). A multigranular object-oriented framework supporting spatio-temporal granularity conversions. International Journal of Geographical Information Science, 20(5), 511–534.

    Article  Google Scholar 

  • Keim, D., et al. (2008). Visual analytics: Definition, process, and challenges. In A. Kerren et al. (Eds.), Information Visualization. Lecture Notes in Computer Science (pp. 154–175). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Laurini, R. (2014). A conceptual framework for geographic knowledge engineering. Journal of Visual Languages & Computing, 25(1), 2–19.

    Article  Google Scholar 

  • Lins, L., Klosowski, J. T., & Scheidegger, C. (2013). Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2456–2465.

    Article  Google Scholar 

  • Parent, C., Spaccapietra, S., & Zimányi, E. (2006). The MurMur project: Modeling and querying multi-representation spatio-temporal databases. Information Systems, 31(8), 733–769.

    Article  Google Scholar 

  • Parent, C., et al. (2009). Multiple representation modeling. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 1844–1849). Berlin: Springer.

    Google Scholar 

  • Pires, J. M., Silva, R. A., & Santos, M. Y. (2014). Reasoning about space and time: Moving towards a theory of granularities. In Computational Science and Its Applications–ICCSA 2014(pp. 328–343). Berlin: Springer.

    Google Scholar 

  • Pozzani, G., & Zimányi, E. (2012). Defining spatio-temporal granularities for raster data. In Data Security and Security Data (pp. 96–107). Berlin: Springer.

    Google Scholar 

  • Stell, J., & Worboys, M. (1998). Stratified map spaces: A formal basis for multi-resolution spatial databases. In Proceedings 8th International Symposium on Spatial Data Handling. Department of Computer Science, Keele University, Staffordshire, UK ST5 5BG (pp. 180–189).

    Google Scholar 

  • Weibel, R., & Dutton, G. (1999). Generalising spatial data and dealing with multiple representations. Geographical information systems, 1, 125–155.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.

    Article  Google Scholar 

  • Zhou, X., et al. (2004). Multiresolution spatial databases: Making web-based spatial applications faster. In J. Yu et al. (Eds.), Advanced web technologies and applications SE—5. Lecture Notes in Computer Science (pp. 36–47). Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Almeida Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, R.A., Pires, J.M., Santos, M.Y., Leal, R. (2015). Aggregating Spatio-temporal Phenomena at Multiple Levels of Detail. In: Bacao, F., Santos, M., Painho, M. (eds) AGILE 2015. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-16787-9_17

Download citation

Publish with us

Policies and ethics