Skip to main content

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 272))

  • 4729 Accesses

Abstract

In the present chapter we consider two mathematical formalizations of the intuitive concept that iterating the dynamics \(\varphi\) provides a “thorough mixing” of the space \((X,\varSigma,\mu )\). Whereas the main theme of the previous chapter, the mean ergodicity of the associated Koopman operator, involved the norm topology, now the weak topology of the associated Lp-spaces becomes important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It may be mistaken to mix different wines, but old and new wisdom mix very well.

  2. 2.

    Der Kaukasische Kreidekreis, Szene 1; Edition Suhrkamp ⋅ Translation from: The Caucasian Chalk Circle, translated by Stefan S. Brecht, James Stern, Heinemann 1996.

Bibliography

  • M. Akcoglu and L. Sucheston [1972] On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235–244.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Bayer and P. Diaconis [1992] Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992), no. 2, 294–313.

    Google Scholar 

  • V. Bergelson, A. del Junco, M. Lemańczyk, and J. M. Rosenblatt [2014] Rigidity and non-recurrence along sequences, Ergodic Theory Dyn. Syst. 34 (2014), 1464–1502.

    Google Scholar 

  • V. Bergelson and T. Downarowicz [2008] Large sets of integers and hierarchy of mixing properties of measure preserving systems, Colloq. Math. 110 (2008), no. 1, 117–150.

    Google Scholar 

  • [1979] Probability and Measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

    Google Scholar 

  • J. R. Blum and D. L. Hanson [1960] On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308–311.

    Google Scholar 

  • [1967] A geometric construction of measure preserving transformations, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2, University of California Press, Berkeley, CA, 1967, pp. 335–360.

    Google Scholar 

  • [1969a] Approximation of transformations with continuous spectrum, Pacific J. Math. 31 (1969), 293–302.

    Google Scholar 

  • [1969b] Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559–562.

    Google Scholar 

  • A. Deitmar and S. Echterhoff [2009] Principles of Harmonic Analysis, Universitext, Springer, New York, 2009.

    Google Scholar 

  • [1981] Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures.

    Google Scholar 

  • H. Furstenberg and B. Weiss [1978a] The finite multipliers of infinite ergodic transformations, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 127–132.

    MathSciNet  Google Scholar 

  • P. R. Halmos [1944] In general a measure preserving transformation is mixing, Ann. Math. (2) 45 (1944), 786–792.

    Google Scholar 

  • [1956] Lectures on Ergodic Theory, Publications of the Mathematical Society of Japan, no. 3, The Mathematical Society of Japan, 1956.

    Google Scholar 

  • [1995] Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.

    Google Scholar 

  • L. K. Jones and V. Kuftinec [1971] A note on the Blum–Hanson theorem, Proc. Amer. Math. Soc. 30 (1971), 202–203.

    Google Scholar 

  • B. O. Koopman and J. von Neumann [1932] Dynamical systems of continuous spectra, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 255–263.

    Google Scholar 

  • V. Müller and Y. Tomilov [2007] Quasisimilarity of power bounded operators and Blum–Hanson property, J. Funct. Anal. 246 (2007), no. 2, 385–399.

    Google Scholar 

  • M. G. Nadkarni [1998a] Basic Ergodic Theory, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1998.

    Google Scholar 

  • K. Petersen [1989] Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original.

    Google Scholar 

  • V. A. Rokhlin [1948] A “general” measure-preserving transformation is not mixing, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 349–351.

    Google Scholar 

  • W. Rudin [1987] Real and Complex Analysis, 3rd ed., McGraw-Hill Book Co., New York, NY, 1987.

    Google Scholar 

  • [2009] Poincaré’s Legacies, Pages from Year Two of a Mathematical Blog. Part I, American Mathematical Society, Providence, RI, 2009.

    Google Scholar 

  • N. Young [1988] An Introduction to Hilbert Space, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel

About this chapter

Cite this chapter

Eisner, T., Farkas, B., Haase, M., Nagel, R. (2015). Mixing Dynamical Systems. In: Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-16898-2_9

Download citation

Publish with us

Policies and ethics