Skip to main content

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

  • 753 Accesses

Abstract

Although single- and double-layer potentials can be used to reduce the dimension of a problem, this comes at the prize of having to deal with integrals over the boundary of a domain. Moreover, these boundary integrals are singular. In order to remove the singularity, we use an approach by Runge which shifts integration towards the boundary of a larger domain. Based on this approach, we introduce the method of fundamental solutions in which a solution to a given partial differential equation is approximated as a linear combination of fundamental solutions to said equations with singularities at suitable points. Subsequent to a short historical overview on the method of fundamental solutions, we show how such a method can be formulated in the context of quasistatic poroelasticity. The main goal of this chapter is to prove density of suitable sets of fundamental solutions in a certain space of solutions to the quasistatic equations of poroelasticity. In a first step, this is done under the assumption of vanishing initial conditions. In order to allow for non-vanishing initial conditions, density results for the method of fundamental solutions in the context of the heat equation are used. This leads to an alternative solution scheme which is also based on the method of fundamental solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The diffusion equation is basically the same as the heat equation. Both can be converted into a Helmholtz equation by applying Fourier transformation with respect to time.

  2. 2.

    Burger’s equation is non-linear when using spatial coordinates, but can be transferred into an uncoupled system of scalar diffusion equations by using material coordinates (cf. Definition 2.50).

  3. 3.

    There are two theorems numbered as 3 in [144]. We refer here to the second one.

References

  1. Aleksidze, M.A.: On approximation solutions of a certain mixed boundary value problem in the theory of harmonic functions. Differ. Equ. 2, 515–518 (1966)

    Google Scholar 

  2. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates. Int. J. Numer. Method. Eng. 77, 177–194 (2009)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.J.S., Silvestre, A.L.: Density results using Stokeslets and a method of fundamental solutions for the Stokes equations. Eng. Anal. Bound. Elem. 28, 1245–1252 (2004)

    Article  MATH  Google Scholar 

  5. António, J., Tadeu, A., Godinho, L.: A Three-dimensional acoustics model using the method of fundamental solutions. Eng. Anal. Bound. Elem. 32, 525–531 (2008)

    Article  MATH  Google Scholar 

  6. Augustin, M.: On the role of poroelasticity for modeling of stress fields in geothermal reservoirs. Int. J. Geomath. 3, 67–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Augustin, M., Freeden, W., Gerhards, C., Möhringer, S., Ostermann, I.: Mathematische Methoden in der Geothermie. Math. Semesterber. 59, 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balakrishnan, K., Ramachandran, P.A.: The method of fundamental solutions for linear diffusion-reaction equations. Math. Comput. Model. 31, 221–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22, 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Browder, F.E.: Approximation by solutions of partial differential equations. Am. J. Math. 84, 134–160 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chantasiriwan, S.: Methods of fundamental solutions for time-dependent heat conduction problems. Int. J. Numer. Method. Eng. 66, 147–165 (2006)

    Article  MATH  Google Scholar 

  13. Chantasiriwan, S., Johansson, B.T., Lesnic, D.: The method of fundamental solutions for free surface Stefan problems. Eng. Anal. Bound. Elem. 33, 529–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C.S., Karageorghis, A., Smyrlis, Y.S. (eds.): The method of fundamental solutions – a meshless method. Dynamic Publishers, Atlanta (2008)

    MATH  Google Scholar 

  15. Chen, C.S., Rashed, Y.F., Golberg, M.A.: A Mesh-Free Method for Linear Diffusion Equations. Numer. Heat Transf. B 33, 469–486 (1998)

    Article  Google Scholar 

  16. Chen, C.W., Young, D.L., Tsai, C.C., Murugesan, K.: The method of fundamental solutions for inverse 2D Stokes problems. Comput. Mech. 37, 2–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Operat. Theory 13, 498–552 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fairweather, G., Karageorghis, A., Martin, P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fam, G.S.A., Rashed, Y.F.: The method of fundamental solutions applied to 3d structures with body forces using particular solutions. Comput. Mech. 36, 245–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Freeden, W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)

    Article  MathSciNet  Google Scholar 

  23. Freeden, W.: Least squares approximation by linear combination of (multi-)poles. Report 344, The Ohio State University, Departement of Geodetic Science and Surveying, Columbus (1983)

    Google Scholar 

  24. Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Method. Appl. Sci. 3, 104–114 (1981)

    Article  MathSciNet  Google Scholar 

  25. Freeden, W., Michel, V.: Multiscale Potential Theory with Applications to Geoscience. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  26. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  27. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: M.A. Golberg (ed.) Boundary Integral Methods – Numerical and Mathematical Aspects, chap. 4, pp. 103–176. WIT Press, Southampton (1998)

    Google Scholar 

  28. Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32, 64–75 (2008)

    Article  MATH  Google Scholar 

  29. Grothaus, M., Raskop, T.: Limit formulae and jump relations of potential theory in Sobolev spaces. Int. J. Geomath. 1, 51–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu, M.H., Fan, C.M., Young, D.L.: The method of fundamental solutions for the multi-dimensional wave equations. J. Mar. Sci. Technol. 19, 586–595 (2011)

    Google Scholar 

  31. Guimaraes, S., Telles, J.C.F.: The method of fundamental solutions for fracture mechanics – Reissner’s plate application. Eng. Anal. Bound. Elem. 33, 1152–1160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Herrera, I.: Trefftz method: a general theory. Numer. Method. Partial Differ. Equ. 16, 561–580 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Method. 6, 181–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 256. Springer, Berlin (1983)

    Google Scholar 

  35. Hu, S.P., Fan, C.M., Chen, C.W., Young, D.L.: Method of fundamental solutions for Stokes’ first and second problems. J. Mech. 21, 25–31 (2005)

    Article  Google Scholar 

  36. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  37. Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction. Eng. Anal. Bound. Elem. 32, 697–703 (2008)

    Article  MATH  Google Scholar 

  38. Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction in layered material. Eng. Anal. Bound. Elem. 33, 1362–1367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl. Math. Model. 35, 4367–4378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for two-dimensional heat conduction. Int. J. Comput. Math. 88, 1697–1713 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Johnson, R.: A priori estimates and unique continuation theorems for second order parabolic equations. Trans. Am. Math. Soc. 158, 167–177 (1971)

    Article  MATH  Google Scholar 

  42. Johnston, R.L., Fairweather, G.: The method of fundamental solutions for problems in potential flow. Appl. Math. Model. 8, 265–270 (1984)

    Article  MATH  Google Scholar 

  43. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69, 434–459 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25, 524–532 (2000)

    Article  MATH  Google Scholar 

  45. Karageorghis, A., Poullikkas, A., Berger, J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445–454 (2006)

    Article  MATH  Google Scholar 

  46. Karageorghis, A., Smyrlis, Y.S., Tsangaris, T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithm. 43, 123–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Katsurada, M.: A mathematical study of the charge simulation method II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 135–162 (1989)

    MathSciNet  Google Scholar 

  48. Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35, 507–518 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31, 123–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)

    Article  MATH  Google Scholar 

  51. Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Jpn. J. Appl. Math. 5, 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kitagawa, T.: Asymptotic stability of the fundamental solution method. J. Comput. Appl. Math. 38, 263–269 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kondapalli, P.S., Shippy, D.J., Fairweather, G.: Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. J. Acoust. Soc. Am. 91, 1844–1854 (1992)

    Article  Google Scholar 

  54. Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Math. Math. Phys. 4, 199–205 (1964)

    Article  Google Scholar 

  55. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4, 82–126 (1964)

    Article  MathSciNet  Google Scholar 

  56. Li, X.: On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson’s equation. Adv. Comput. Math. 23, 265–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, X.: Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere. Adv. Comput. Math. 28, 269–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, X.: Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball. Adv. Comput. Math. 29, 393–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Marin, L.: An alternating iterative MFS algorithm for the Cauchy problem for the modified Helmholtz equation. Comput. Mech. 45, 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  61. Cirne de Mederios, G., Partridge, P.W.: The method of fundamental solutions with dual reciprocity for thermoelasticity. In: International Workshop on Meshfree Methods, Lisbon (2003)

    Google Scholar 

  62. Cirne de Mederios, G., Partridge, P.W., Bandão, J.O.: The method of fundamental solutions with dual reciprocity for some problems in elasticity. Eng. Anal. Bound. Elem. 28, 453–461 (2004)

    Google Scholar 

  63. Mikhailov, V.P.: Partial Differential Equations. MIR Publishers, Moscow (1978)

    Google Scholar 

  64. Müller, C., Kersten, H.: Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung \(\bigtriangleup U + k^{2}U = 0\). Math. Method. Appl. Sci. 2, 48–67 (1980)

    Article  MATH  Google Scholar 

  65. Nennig, P., Perrey-Debain, E., Chazot, J.D.: The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng. Anal. Bound. Elem. 35, 1019–1028 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Poullikkas, A., Karageorghis, A., Georgiou, G.: The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions. Eng. Anal. Bound. Elem. 25, 221–227 (2001)

    Article  MATH  Google Scholar 

  67. Raskop, T.: The analysis of oblique boundary problems and limit formulae motivated by problems from geomathematics. Ph.D. thesis, University of Kaiserslautern, Functional Analysis and Stochastic Analysis Group (2009)

    Google Scholar 

  68. Redekop, D.: Fundamental solutions for the collation [sic] method in planar elastostatics. Appl. Math. Model. 6, 390–393 (1982)

    Article  MATH  Google Scholar 

  69. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. rein. angew. Math. 135, 1–6 (1909)

    MathSciNet  Google Scholar 

  70. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  71. Runge, C.: Zur Theorie der eindeutigen analytischen Functionen. Acta Math. 6, 229–234 (1885)

    Article  MathSciNet  MATH  Google Scholar 

  72. Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  73. Schaback, R.: Adaptive numerical solution of MFS systems. In: C.S. Chen, A. Karageorghis, Y.S. Smyrlis (eds.) The Method of Fundamental Solutions – A Meshless Method, pp. 1–27. Dynamic Publishers, Atlanta (2008)

    Google Scholar 

  74. Sensale-Rodriguez, B., Sensale, B., Leitão, V.M.A., Peixeiro, C.: Microstrip antenna analysis using the method of fundamental solutions. Int. J. Numer. Model.: Electron. Net. Device. Field. 21, 563–581 (2008)

    Google Scholar 

  75. Smyrlis, Y.S.: The method of fundamental solutions: a weighted least-squares approach. BIT Numer. Math. 46, 163–194 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. Smyrlis, Y.S.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Smyrlis, Y.S.: Density results with linear combinations of translates of fundamental solutions. J. Approx. Theory 161, 617–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  78. Smyrlis, Y.S.: Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the MFS for certain harmonic problems. ESAIM: Math. Model. Numer. Anal. 38, 495–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Smyrlis, Y.S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227, 83–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Smyrlis, Y.S., Karageorghis, A.: The under-determined version of the MFS: taking more sources than collocation points. Appl. Numer. Math. 60, 337–357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings of the Second International Congress on Applied Mechanics, Zürich (1926)

    Google Scholar 

  83. Tsai, C.C.: Solutions of slow Brinkman flows using the method of fundamental solutions. Int. J. Numer. Method. Fluid. 56, 927–940 (2008)

    Article  MATH  Google Scholar 

  84. Tsai, C.C.: The method of fundamental solutions with dual reciprocity for three-dimensional thermoelasticity under arbitrary body forces. Eng. Comput. Int. J. Comput. Eng. Softw. 26, 229–244 (2009)

    MATH  Google Scholar 

  85. Tsai, C.C., Hsu, T.W.: The method of fundamental solutions for oscillatory and porous buoyant flows. Comput. Fluid. 39, 696–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Tsai, C.C., Hsu, T.W.: A meshless numerical method for solving slow mixed convections in containers with discontinuous boundary data. Int. J. Numer. Method. Fluid. 66, 377–402 (2011)

    Article  MATH  Google Scholar 

  87. Tsai, C.C., Young, D.L., Fan, C.M., Chen, C.W.: MFS with time-dependent fundamental solutions for unsteady Stokes equations. Eng. Anal. Bound. Elem. 30, 897–908 (2006)

    Article  MATH  Google Scholar 

  88. Tsangaris, T., Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the method of fundamental solutions for harmonic problems in annular domains. Numer. Method. Partial Differ. Equ. 21, 507–539 (2005)

    MathSciNet  Google Scholar 

  89. Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)

    Article  MATH  Google Scholar 

  90. Weinstock, B.M.: Uniform approximation by solutions of elliptic equations. Proc. Am. Math. Soc. 41, 513–517 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  91. Wen, P.H., Liu, Y.W.: The fundamental solution of poroelastic plate saturated by fluid and its applications. Int. J. Numer. Anal. Method. Geomech. 34, 689–709 (2010)

    MATH  Google Scholar 

  92. Young, D.L., Chen, C.H., Fan, C.M., Shen, L.H.: The method of fundamental solutions with eigenfunctions expansion method for 3d nonhomogeneous diffusion equations. Numer. Method. Partial Differ. Equ. 25, 195–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  93. Young, D.L., Chen, C.W., Fan, C.M., Tsai, C.C.: The method of fundamental solutions with eigenfunction expansion method for nonhomogeneous diffusion equation. Numer. Method. Partial Differ. Equ. 22, 1173–1196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  94. Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395–412 (2008)

    Article  MATH  Google Scholar 

  95. Young, D.L., Jane, S.J., Fan, C.M., Murugesan, K., Tsai, C.C.: The method of fundamental solutions for 2D and 3D Stokes problems. J. Comput. Phys. 211, 1–8 (2006)

    Article  MATH  Google Scholar 

  96. Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.: Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 28, 1463–1473 (2004)

    Article  MATH  Google Scholar 

  97. Zhou, H., Pozrikidis, C.: Adaptive singularity method for Stokes flow past particles. J. Comput. Phys. 117, 79–89 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Augustin, M.A. (2015). Methods of Fundamental Solutions in Poroelasticity. In: A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17079-4_5

Download citation

Publish with us

Policies and ethics