Skip to main content

Abstract

Acid–base chemistry deals with proton transfer from an acid to a base and represents an effective approach to the development of proton conducting materials. The acidity difference (ΔpK a) of the two components dictates the extent of proton transfer and therefore the ionicity and other properties of an acid–base system. Only an appropriate acidity matching allows for formation of extensive hydrogen bond networks which in turn promotes the proton dynamics and Grotthuss mechanism of the proton conductivity. To frame the hypothesis initial effort is made to compile information of acid–base systems including aqueous solutions, ionic liquids, solid crystals, acid-doped basic polymers, base-doped acidic polymers as well as inorganic solid acids. Upon further validation, the insight might open vision to avenues of material sciences in the field of proton conducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikstrom M (1998) Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr Opin Struct Biol 8:480–488

    Article  Google Scholar 

  2. Wraight CA, Colin A (2006) Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim BioPhys Acta 1757:886–912

    Article  Google Scholar 

  3. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  Google Scholar 

  4. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7:1848–1870

    Article  Google Scholar 

  5. Paddison SJ, Kreuer KD, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542

    Article  Google Scholar 

  6. Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  7. Kreuer KD, Rabenau A, Weppner W (1982) Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew Chem Int Ed Engl 21:208–209

    Article  Google Scholar 

  8. Steininger H, Schuster M, Kreuer KD et al (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773

    Article  Google Scholar 

  9. Stillinger FH (1980) Water revisited. Science 209:451–457

    Article  Google Scholar 

  10. Eaves JD, Loparo JJ, Fecko CJ et al (2005) Hydrogen bonds in liquid water are broken only fleetingly. Proc Natl Acad Sci U S A 102:13019–13022

    Article  Google Scholar 

  11. Bakker HJ, Skinner JL (2010) Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev 110:1498–1517

    Article  Google Scholar 

  12. Agmon N (1999) Proton solvation and proton mobility. Isr J Chem 39:493–502

    Article  Google Scholar 

  13. Munson RA (1964) Self-dissociative equilibria in molten phosphoric acid. J Phys Chem 68:3374–3377

    Article  Google Scholar 

  14. Vilčiauskas L, Tuckerman ME, Bester G et al (2013) The mechanism of proton conduction in phosphoric acid. Nat Chem 4:461–466

    Article  Google Scholar 

  15. Dippel T, Kreuer KD, Lassègues JC et al (1993) Proton conductivity in fused phosphoric acid; a 1H/31P PFG-NMR and QNS study. Solid State Ionics 61:41–46

    Article  Google Scholar 

  16. Gilli P, Gilli G (2009) The nature of the hydrogen bond. New York, Oxford

    Book  Google Scholar 

  17. Gilli P, Pretto L, Gilli G (2007) PA/pK a equalization and the prediction of the hydrogen-bond strength: a synergism of classical thermodynamics and structural crystallography. J Mol Struct 844–845:328–339

    Article  Google Scholar 

  18. Kreuer KD (2014) Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 26:36–380

    Article  Google Scholar 

  19. Kreuer K-D (2000) On the complexity of proton conduction phenomena. Solid State Ionics 136:149–160

    Article  Google Scholar 

  20. Cookson RF (1974) Determination of acidity constants. Chem Rev 74:5–28

    Article  Google Scholar 

  21. Dykstra CE, Lisy JM (2000) Experimental and theoretical challenges in the chemistry of noncovalent intermolecular interaction and clustering. J Mol Struct (Theochem) 500:375–390

    Article  Google Scholar 

  22. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  23. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9:91–124

    Article  Google Scholar 

  24. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching v(XH) vibration in infrared spectra. Spectrochim Acta 55A:1585–1612

    Article  Google Scholar 

  25. Pecul M, Leszczynski J, Sadlej J (2000) Comprehensive ab initio studies of nuclear magnetic resonance shielding and coupling constants in XH⋯O hydrogen-bonded complexes of simple organic molecules. J Chem Phys 112:7930–7938

    Article  Google Scholar 

  26. Arunan E, Desiraju GR, Klein RA et al (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83:1619–1636

    Google Scholar 

  27. Gilli P, Pretto L, Bertolasi V et al (2009) Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc Chem Res 42:33–44

    Article  Google Scholar 

  28. Zundel, G (1996) The far infrared vibration of hydrogen bonds with large proton polarizability. J MOL STRUCT 381:23–37

    Google Scholar 

  29. Lindemann R, Zundel G (1977) Polarizability, proton transfer and symmetry of energy surfaces of carboxylic acid N-base hydrogen bonds—infrared investigations. J Chem Soc Faraday Trans 2(73):788–803

    Article  Google Scholar 

  30. Munson RA (1964) Dielectric constant of phosphoric acid. J Chem Phys 40:2044–2046

    Article  Google Scholar 

  31. Judeinstein P, Iojoiu C, Sanchez JY et al (2008) Proton conducting ionic liquid organization as probed by NMR: self-diffusion coefficients and heteronuclear correlations. J Phys Chem B 112:3680–3683

    Article  Google Scholar 

  32. Zundel G (2000) Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 111. Wiley, New York, pp 1–217. ISBN 0-471-34990-9

    Chapter  Google Scholar 

  33. MacFarlane DR, Forsyth M, Izgorodina EI et al (2009) On the concept of ionicity in ionic liquids. Phys Chem Chem Phys 11:4962–4967

    Article  Google Scholar 

  34. Tokuda H, Tsuzuki S, Susan MABH et al (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600

    Article  Google Scholar 

  35. Hirao M, Sugimoto H, Ohno H (2000) Preparation of novel room-temperature molten salts by neutralization of amines. J Electrochem Soc 147:4168–4172

    Article  Google Scholar 

  36. Yoshizawa M, Ogihara W, Ohno H (2001) Design of new ionic liquids by neutralization of imidazole derivatives with imide-type acids. Electrochem Solid-State Lett 4:E25–E27

    Article  Google Scholar 

  37. Belieres J-P, Angell CA (2007) Protic ionic liquids: preparation, characterization, and proton free energy level representation. J Phys Chem B 111:4926–4937

    Article  Google Scholar 

  38. Bautista-Martinez JA, Tang L, Bellieres J-P et al (2009) Hydrogen redox in protic ionic liquids and a direct measurement of proton thermodynamics. J Phys Chem C 113:12586–12593

    Article  Google Scholar 

  39. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpK a from aqueous solutions. J Am Chem Soc 125:15411–15419

    Article  Google Scholar 

  40. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution—like conductivities. Science 302:422–425

    Article  Google Scholar 

  41. Luo H, Baker GA, Lee JS et al (2009) Ultrastable superbase-derived protic ionic liquids. J Phys Chem B 113:4181–4183

    Article  Google Scholar 

  42. Miran MS, Kinoshita H, Yasuda T et al (2012) Physicochemical properties determined by ΔpK a for protic ionic liquids based on an organic super-strong base with various Brønsted acids. Phys Chem Chem Phys 14:5178–5186

    Article  Google Scholar 

  43. Angell CA, Ansari Y, Zhao ZF (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27

    Article  Google Scholar 

  44. Sobczyk L (1998) X-ray diffraction, IR, UV and NMR studies on proton transfer equilibrating phenol-N-base systems. Ber Bunsenges Phys Chem 102:377–383

    Article  Google Scholar 

  45. Huyskens P, Sobczyk L, Majerz I (2002) On a hard/soft hydrogen bond interaction. J Mol Struct 615:61–72

    Article  Google Scholar 

  46. Banerjee R, Bhatt PM, Ravindra NV et al (2005) Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst Growth Des 5:2299–2309

    Article  Google Scholar 

  47. Stoimenovski J, Izgorodina EI, MacFarlane DR (2010) Ionicity and proton transfer in protic ionic liquids. Phys Chem Chem Phys 12:10341–10347

    Article  Google Scholar 

  48. Stoimenovski J, Dean PM, Izgorodina EI et al (2012) Protic pharmaceutical ionic liquids and solids: aspects of protonics. Faraday Discuss 154:335–352

    Article  Google Scholar 

  49. Yi D, Zhang H, Deng Z (2010) 1H and 15N chemical shifts of adsorbed acetonitrile as measures to probe the Brønsted acid strength of solid acids: a DFT study. J Mol Catal A Chem 326:88–93

    Article  Google Scholar 

  50. Miran MS, Kinoshita H, Yasuda T et al (2011) Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chem Commun 47:12676–12678

    Article  Google Scholar 

  51. Zhang DF, Yan LM (2010) Probing the acid-base equilibrium in acid-benzimidazole complexes by 1H NMR spectra and density functional theory calculations. J Phys Chem B 114:12234–12241

    Article  Google Scholar 

  52. Walden P (1906) Organic solutions- and ionisation means III Chapter: internal friction and its connection with conductivity. Z Phys Chem 55:207–249

    Google Scholar 

  53. Kanzaki R, Doi H, Song X et al (2012) Acid-base property of N-methylimidazolium-based protic ionic liquids depending on anion. J Phys Chem B 116:14146–14152

    Article  Google Scholar 

  54. Doi H, Song X, Minofar B et al (2013) A new proton conductive liquid with no ions: pseudo-protic ionic liquids. Chem Eur J 19:11522–11526

    Article  Google Scholar 

  55. MacFarlane DR, Pringle JM, Johansson KM et al (2006) Lewis base ionic liquids. Chem Commun 18:1905–1917

    Article  Google Scholar 

  56. Lassegues J-C (1992) Mixed inorganic-organic systems: the acid/polymer blends. In: Colomban PH (ed) Proton conductors: solids, membranes and gels—materials and devices. Cambridge University Press, New York, p 311

    Chapter  Google Scholar 

  57. Donoso P, Gorecki W, Berthier C et al (1988) NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x. Solid State Ionics 28:969–974

    Article  Google Scholar 

  58. Petty-Weeks S, Zupancic JJ, Swedo JR (1988) Proton conducting interpenetration polymer networks. Solid State Ionics 31:117–125

    Article  Google Scholar 

  59. Stevens JR, Wieczorek W, Raducha D et al (1997) Proton conducting gel H3PO4 electrolytes. Solid State Ionics 97:347–358

    Article  Google Scholar 

  60. Tanaka R, Yamamoto H, Shono A et al (2000) Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid. Electrochim Acta 45:1385–1389

    Article  Google Scholar 

  61. Glipa X, Bonnet B, Mula B et al (1999) Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem 9:3045–3049

    Article  Google Scholar 

  62. Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299

    Article  Google Scholar 

  63. Vilčiauskas L, Tuckerman ME, Melchior JP et al (2013) First principles molecular dynamics study of proton dynamics and transport in phosphoric acid/imidazole (2:1) system. Solid State Ionics 252:34–39

    Article  Google Scholar 

  64. Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  65. Bozkurt A, Ise M, Kreuer KD et al (1999) Proton-conducting polymer electrolytes based on phosphoric acid. Solid State Ionics 125:225–233

    Article  Google Scholar 

  66. Kreuer KD, Fuchs A, Ise M et al (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288

    Article  Google Scholar 

  67. Kawada A, McGhie AR, Labes MM (1970) Protonic conductivity in imidazole single crystal. J Chem Phys 52:3121–3125

    Article  Google Scholar 

  68. Münch W, Kreuer KD, Silvestri W et al (2001) The diffusion mechanism of an excess proton in imidazole molecule chains: first results of an ab initio molecular dynamics study. Solid State Ionics 145:437–443

    Article  Google Scholar 

  69. Schuster M, Meyer WH, Wegner G et al (2001) Proton mobility in oligomer-bound proton solvents: Imidazole immobilization via flexible spacers. Solid State Ionics 145:85–92

    Article  Google Scholar 

  70. Frutsaert G, Delon L, David G et al (2010) Synthesis and properties of new fluorinated polymers bearing pendant imidazole groups for fuel cell membranes operating over a broad relative humidity range. J Polym Sci A Polym Chem 48:223–231

    Article  Google Scholar 

  71. Frutsaert G, David G, Ameduri B et al (2011) Synthesis and characterisation of novel fluorinated polymers bearing pendant imidazole groups and blend membranes: new materials for PEMFC operating at low relative humidity. J Membr Sci 367:127–133

    Article  Google Scholar 

  72. Boroglu MS, Celik SU, Bozkurt A et al (2011) The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J Membr Sci 375:157–164

    Article  Google Scholar 

  73. Yamada M, Honma I (2005) Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer 46:2986–2992

    Article  Google Scholar 

  74. Cosgun S, Celik SU, Ozden S et al (2010) Proton conductivity properties of acid doped fluoroalkylated 1,2,3-triazole. J Fluorine Chem 131:776–779

    Article  Google Scholar 

  75. Ozden S, Celik SU, Bozkurt A (2010) Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes. Electrochim Acta 55:8498–8503

    Article  Google Scholar 

  76. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole. J Polym Res 21:526–538

    Article  Google Scholar 

  77. Subbaraman R, Ghassemi H, Zawodzinski TA Jr (2007) 4,5-Dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells. J Am Chem Soc 129:2238–2239

    Article  Google Scholar 

  78. Karadedeli B, Bozkurt A, Baykal A (2005) Proton conduction in adipic acid/benzimidazole hybrid electrolytes. Physica B 364:279–284

    Article  Google Scholar 

  79. Bozkurt A, Meyer WH, Wegner G (2003) PAA/imidazol-based proton conducting polymer electrolytes. J Power Sources 123:126–131

    Article  Google Scholar 

  80. Yamada M, Honma I (2004) Alginic acid-imidazole composite material as anhydrous proton conducting membrane. Polymer 5:8349–8354

    Article  Google Scholar 

  81. Fu Y, Manthiram A, Guiver MD (2006) Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem Commun 8:1386–1390

    Article  Google Scholar 

  82. Fu Y, Manthiram A, Guiver MD (2007) Acid-base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem Commun 9:905–910

    Article  Google Scholar 

  83. Li W, Norris BC, Snodgrass P et al (2009) Evaluating the role of additive pK(a) on the proton conductivities of blended sulfonated poly(ether ether ketone) membranes. J Phys Chem 113:10063–10067

    Article  Google Scholar 

  84. Zhou Z, Li S, Zhang Y et al (2005) Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. J Am Chem Soc 127:10824–10825

    Article  Google Scholar 

  85. Li S, Zhou Z, Zhang Y et al (2005) 1H-1,2,4-triazole: An effective solvent for proton-conducting electrolytes. Chem Mater 17:5884–5886

    Article  Google Scholar 

  86. Göktepe F, Bozkurt A, Günday ST (2008) Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes. Polym Int 57:133–138

    Article  Google Scholar 

  87. Bozkurt A (2005) Anhydrous proton conductive polystyrene sulfonic acid membranes. Turk J Chem 29:117–123

    Google Scholar 

  88. Erdemi H, Bozkurt A, Meyer WH (2004) PAMPSA-IM based proton conducting polymer electrolytes. Synth Met 143:133–138

    Article  Google Scholar 

  89. Günday ST, Bozkurt A, Meyer WH et al (2006) Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends. Polym Sci B Polym Phys 44:3315–3322

    Article  Google Scholar 

  90. Sun J, Jordan LR, Forsyth M et al (2001) Acid-organic base swollen polymer membranes. Electrochim Acta 46:1703–1708

    Article  Google Scholar 

  91. Yang C, Costamagna P, Srinivasan S et al (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9

    Article  Google Scholar 

  92. Fu YZ, Manthiram A (2007) Nafion–imidazole–H3PO4 composite membranes for proton exchange membrane fuel cells. J Electrochem Soc 154:B8–B12

    Article  Google Scholar 

  93. Kim JD, Mori T, Hayashi S et al (2007) Anhydrous proton-conducting properties of Nafion-1,2,4-triazole and Nafion-benzimidazole membranes for polymer electrolyte fuel cells. J Electrochem Soc 154:A290–A294

    Article  Google Scholar 

  94. Sen U, Celik SU, Ata A et al (2008) Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/azole composites. Int J Hydrogen Energy 33:2808–2815

    Article  Google Scholar 

  95. Sevil F, Bozkurt A (2004) Proton conducting polymer electrolytes on the basis of poly (vinylphosphonic acid) and imidazole. J Phys Chem Solids 65:1659–1662

    Article  Google Scholar 

  96. Sevil F, Bozkurt A (2005) Proton conduction in PVPA—benzimidazole hybrid electrolytes. Turk J Chem 29:377–383

    Google Scholar 

  97. Kufacı M, Bozkurt A, Tülü M (2006) Poly(ethyleneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials. Solid State Ionics 177:1003–1007

    Article  Google Scholar 

  98. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27

    Article  Google Scholar 

  99. Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247

    Article  Google Scholar 

  100. Savinell R, Yeager E, Tryk D et al (1994) A polymer electrolyte for operation at temperatures up to 200 °C. J Electrochem Soc 141:L46–L48

    Article  Google Scholar 

  101. Aili D, Savinell RF, Jensen JO et al (2014) The electrochemical behavior of phosphoric acid doped poly(perfluorosulfonic acid) membranes. ChemElectroChem 1:1471–1475

    Article  Google Scholar 

  102. Haile SM, Boysen DA, Chisholm CRI et al (2001) Solid acids as fuel cell electrolytes. Nature 410:910–913

    Article  Google Scholar 

  103. Haile SM, Chisholm CRI, Sasaki K et al (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39

    Article  Google Scholar 

  104. Komukae M, Osaka T, Makita Y et al (1981) Dielectric and thermal studies on new phase-transitions of CsHSO4. J Phys Soc Jpn 50:3187–3188

    Article  Google Scholar 

  105. Baranov AI, Shuvalov LA, Shchagina NM (1982) Superion conductivity and phase-transitions in CsHSO4 and CsHSO4 crystals. JETP Lett 36:459–462

    Google Scholar 

  106. Otomo J, Tamaki T, Nishida S et al (2005) Effect of water vapor on proton conduction of cesium dihydrogen phosphate and application to intermediate temperature fuel cells. J Appl Electrochem 35:865–870

    Article  Google Scholar 

  107. Traer JW, Goward GR (2007) Solid-state NMR studies of hydrogen bonding networks and proton transport pathways based on anion and cation dynamics. Magn Reson Chem 45:S135–S143

    Article  Google Scholar 

  108. Uda T, Haile SM (2005) Thin-membrane solid-acid fuel cell. Electrochem Solid-State Lett 8:A245–A246

    Article  Google Scholar 

  109. Chisholm CR, Jang YH, Haile SM et al (2005) Superprotonic phase transition of CsHSO4: a molecular dynamics simulation study. Phys Rev B Condens Matter Mater Phys 72:134103

    Article  Google Scholar 

  110. Boysen DA, Uda T, Chisholm CRI (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70

    Article  Google Scholar 

  111. Mangiatordi GF, Butera V, Russo N et al (2012) Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism. Phys Chem Chem Phys 14:10910–10918

    Article  Google Scholar 

  112. Oh S, Insani EK, Nguyen VH et al (2011) Mechanochemically synthesized CsH2PO4–H3PW12O40 composites as proton-conducting electrolytes for fuel cell systems in a dry atmosphere. Sci Technol Adv Mater 12:034402

    Article  Google Scholar 

  113. Oh S, Kawamura G, Muto H et al (2012) Mechanochemical synthesis of proton conductive composites derived from cesium dihydrogen phosphate and guanine. Solid State Ionics 225:223–227

    Article  Google Scholar 

  114. Oh S, Kawamura G, Muto H et al (2012) Anhydrous protic conduction of mechanochemically synthesized CsHSO4-azole-derived composites. Electrochim Acta 75:11–19

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Innovation Fund Denmark (4M Centre 0603-00527B) and Danish Council for Independent Research, Technology and Production Science (no.11-117035/FTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Q., Aili, D., Savinell, R.F., Jensen, J.O. (2016). Acid–Base Chemistry and Proton Conductivity. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics