Skip to main content

Abstract

Infants with birth body weight less than 1500 g develop a postnatal growth failure in the vast majority of the cases. To limit this risk, enteral nutrition should be introduced appropriately, with respect to actual requirements of preterm neonates. Administration of enteral nutrition depends on postnatal age and clinical conditions. During the early adaptive period of life (from birth to approximately day 7), hemodynamic instability associated with immaturity of the gastrointestinal tract limit the use of enteral nutrition. Parenteral nutrition represents the main route of administration of nutrients in this period. However, enteral nutrition should be started since the first 1–2 days of life as minimal enteral feeding (10–30 ml/kg/day) and progressively increased (by 20–30 ml/kg/day) until full enteral feeding is reached (120 kcal/kg/day) and, contemporarily, parenteral nutrition could be stopped. In the stable growing period (from approximately day 7 to near term/discharge), all nutritional requirements, including macronutrients and micronutrients, should be reached only by enteral nutrition. Human milk is the preferred form of enteral nutrition for preterm babies; however, fortification with adequate amount of protein, carbohydrates, lipids, electrolytes, and micronutrients should be adopted to respect nutritional needs of these subjects. In this chapter, we focused on modalities to reach nutritional requirements by enteral nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev. 2012;88:S5–7.

    Google Scholar 

  2. Berni Canani R, Passariello A, Buccigrossi V, Terrin G, Guarino A. The nutritional modulation of the evolving intestine. J Clin Gastroenterol. 2008;42(Suppl 3):S197–200.

    Google Scholar 

  3. Corpeleijn WE, Kouwenhoven SM, van Goudoever JB. Optimal growth of preterm infants. World Rev Nutr Diet. 2013;106:149–55.

    Google Scholar 

  4. De Curtis M, Rigo J. Extrauterine growth restriction in very-low-birthweight infants. Acta Paediatr. 2004;93:1563–8.

    Google Scholar 

  5. Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.

    Google Scholar 

  6. Karagianni P, Briana DD, Mitsiakos G, Elias A, Theodoridis T, Chatziioannidis E, Kyriakidou M, Nikolaidis N. Early versus delayed minimal enteral feeding and risk for necrotizing enterocolitis in preterm growth-restricted infants with abnormal antenatal Doppler results. Am J Perinatol. 2010;27:367–73.

    Google Scholar 

  7. Morgan J, Bombell S, McGuire W. Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2013;3:CD000504.

    Google Scholar 

  8. Terrin G, Passariello A, Canani RB, et al. Minimal enteral feeding reduces the risk of sepsis in feed-intolerant very low birth weight newborns. Acta Paediatr. 2009;98:31–5.

    Google Scholar 

  9. de Halleux V, Rigo J. Variability in human milk composition: benefit of individualized fortification in very-low-birth-weight infants. Am J Clin Nutr. 2013;98:529S–35S.

    Article  PubMed  CAS  Google Scholar 

  10. Dawson JA, Summan R, Badawi N, Foster JP. Push versus gravity for intermittent bolus gavage tube feeding of premature and low birth weight infants. Cochrane Database Syst Rev. 2012;11:CD005249

    Google Scholar 

  11. SIFT Investigators Group. Early enteral feeding strategies for very preterm infants: current evidence from Cochrane reviews. Arch Dis Child Fetal Neonatal Ed. 2013;98:F470–2.

    Google Scholar 

  12. Senterre T. Practice of enteral nutrition in very low birth weight and extremely low birth weight infants. World Rev Nutr Diet. 2014;110:201–14.

    Google Scholar 

  13. Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2013;3:CD001241.

    Google Scholar 

  14. Lucchini R, Bizzarri B, Giampietro S, De Curtis M. Feeding intolerance in preterm infants. How to understand the warning signs. J Matern Fetal Neonatal Med. 2011;24(Suppl 1):72–4.

    Google Scholar 

  15. Rigo J. Protein, amino acid and other nitrogen compounds. In: Tsang RC, Uauy R, Koletzko B, Zlotkin SH, editors. Nutritional of the preterm infant. Cincinnati: Digital Education; 2005. pp. 45–80.

    Google Scholar 

  16. Koletzko B, Poindexter B, Uauy R. Recommended nutrient intake levels for stable, fully enterally fed very low birth weight infants. World Rev Nutr Diet. 2014;110:297–9.

    Google Scholar 

  17. Fenton TR, Premji SS, Al-Wassia H, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2014;4:CD003959.

    Google Scholar 

  18. Embleton ND, Cooke RJ. Protein requirements in preterm infants: effect of different levels of protein intake on growth and body composition. Pediatr Res. 2005;58:855–60.

    Google Scholar 

  19. Young L, Morgan J, McCormick FM, McGuire W. Nutrient-enriched formula versus standard term formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2012;14(3):CD004696.

    Google Scholar 

  20. Goldman HI, Goldman JS, Kaufman I, Liebman OB. Late effects of early dietary protein intake on low-birth-weight infants. J Pediatr. 1974;85:764–9.

    Google Scholar 

  21. Rigo J, Senterre J. Nutritional needs of premature infants: current issues. J Pediatr. 2006;149:s80–8.

    Google Scholar 

  22. García-Lara NR, Vieco DE, De la Cruz-Bértolo J, Lora-Pablos D, Velasco NU, Pallás-Alonso CR. Effect of Holder pasteurization and frozen storage on macronutrients and energy content of breast milk. J Pediatr Gastroenterol Nutr. 2013;57(3):377–82.

    Google Scholar 

  23. Rigo J, Boehm G, Georgi G et al. An infant formula free of glycomacropeptide prevents hyperthreoninemia in formula-fed preterm infants. J Pediatr Gastroenterol Nutr. 2001;32:127–30.

    Google Scholar 

  24. Fleddermann M, Demmelmair H, Grote V, Nikolic T, Trisic B, Koletzko B. Infant formula composition affects energetic efficiency for growth: the BeMIM study, a randomized controlled trial. Clin Nutr. 2013. pii:S0261-5614(13)00330-0. doi:10.1016/j.clnu.2013.12.007.

    Google Scholar 

  25. Sandström O, Lönnerdal B, Graverholt G, Hernell O. Effects of alpha-lactalbumin-enriched formula containing different concentrations of glycomacropeptide on infant nutrition. Am J Clin Nutr. 2008;87(4):921–8.

    Google Scholar 

  26. Mihatsh WA, Hogel J, Pohlandt F. Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr. 2001;90:196–8.

    Google Scholar 

  27. Michaelsen KF, Greer FR. Protein needs early in life and long-term health. Am J Clin Nutr. 2014;99(3):718S–22S. doi:10.3945/ajcn.113.072603. Epub 2014 Jan 22.

    Google Scholar 

  28. Ziegler EE. Meeting the nutritional needs of the low-birth-weight infant. Ann Nutr Metab. 2011;58(Suppl 1):8–18. doi:10.1159/000323381. Epub 2011 Jun 21. Review. PubMed PMID: 21701163.

    Google Scholar 

  29. Denne SC. Protein and energy requirements in preterm infants. Semin Neonatol. 2001;6:377–82.

    Google Scholar 

  30. De Curtis M, Brooke OG. Energy and nitrogen balances in very low birth weight infants. Arch Dis Child. 1987;62:830–2.

    Google Scholar 

  31. Koletzko BV, Innis SM. Lipids. In: Tsang RC, editor. Nutritional needs of the preterm infant. Baltimore: Williams & Wilkins; 2003

    Google Scholar 

  32. Innis SM. The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci. 2000;22:474–80.

    Google Scholar 

  33. Koletzko B, Agostoni C, Carlson SE, et al. Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr. 2001;90:460–4.

    Google Scholar 

  34. Lapillonne A, Groh-Wargo S, Gonzalez CH, Uauy R. Lipid needs of preterm infants: updated recommendations. J Pediatr. 2013;162(Suppl 3):S37–47. doi:10.1016/j.jpeds.2012.11.052. PubMed PMID: 23445847.

    Google Scholar 

  35. Verger J. Nutrition in the pediatric population in the intensive care unit. Crit Care Nurs Clin North Am. 201426(2):199–215. doi:10.1016/j.ccell.2014.02.005. Review. PubMed PMID: 24878206.

    Google Scholar 

  36. Bhatia J. Human milk and the premature infant. Ann Nutr Metab. 2013;62(Suppl 3):8–14. doi:10.1159/000351537. Epub 2013 Aug 19. Review. PubMed PMID: 23970211.

    Article  PubMed  CAS  Google Scholar 

  37. Brand Miller J, McVeagh P. Human milk oligosaccharides: 130 reasons to breast-feed. Br J Nutr. 1999;82:333–5.

    Google Scholar 

  38. Siegel M, Kranz B, Lebenthal E. Effect of fat and carbohydrate composition on the gastric emptying of isocaloric feedings in premature infants. Gastroenterology 1985;89:785–90.

    Google Scholar 

  39. Modi N, Uthaya S, Fell J, Kulinskaya E. A randomized, double-blind, controlled trial of the effect of prebiotic oligosaccharides on enteral tolerance in preterm infants (ISRCTN77444690). Pediatr Res. 2010;68(5):440–5.

    Google Scholar 

  40. Davies ID, Avner ED. Fluid and electrolyte management. In: Fanaroff AA, Martin RJ, editors. Neonatal–perinatal medicine. 7th ed. St Louis: Mosby; 2002. pp. 619–27.

    Google Scholar 

  41. De Curtis M, Senterre J, Rigo J. Renal solute load in preterm infants. Arch Dis Child. 1990;65:357–60.

    Google Scholar 

  42. De Curtis M, Rigo J. Nutrition and kidney in preterm infant. J Matern Fetal Neonatal Med. 2012;25(Suppl 1):55–9.

    Google Scholar 

  43. Al-Dahhan J, Jannoun L, Haycock GB. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age. Arch Dis Child Fetal Neonatal Ed. 2002;86(2):F120–3. PubMed PMID: 11882555; PubMed Central PMCID: PMC1721384.

    Google Scholar 

  44. Chow JM, Douglas D. Fluid and electrolyte management in the premature infant. Neonatal Netw. 2008;27(6):379–86.

    Google Scholar 

  45. Rigo J, De Curtis M, Salle BL, et al. Bone mineral metabolism in the micropremie. Clin Perinatol. 2000;27:147–70.

    Google Scholar 

  46. Rigo J, Pieltain C, Salle B, Senterre J. Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr. 2007;96(7):969–74.

    Google Scholar 

  47. Abrams SA. Committee on nutrition. Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83. doi:10.1542/peds.2013-0420. Epub 2013 Apr 29. Review. PubMed PMID: 23629620.

    Google Scholar 

  48. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296(5571):1313–6.

    Google Scholar 

  49. Domellöf M. Iron and other micronutrient deficiencies in low-birthweight infants. Nestle Nutr Inst Workshop Ser. 2013;74:197–206.

    Google Scholar 

  50. Terrin G, Canani BR, Passariello A. Zinc supplementation reduces morbidity and mortality in very low birth weight preterm neonates: a hospital based randomized, placebo-controlled trial in an industrialized country. Am J Clin Nutr. 2013;98(6):1468–74.

    Google Scholar 

  51. American Academy of Pediatrics, Work Group on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics. 1997;100:1035–9.

    Google Scholar 

  52. Quigley M, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2014;4:CD002971.

    Google Scholar 

  53. Underwood MA. Human milk for the premature infant. Pediatr Clin North Am. 2013;60:189–207.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, Kiechl-Kohlendorfer U, Chan GM, Blanco CL, Abrams S, Cotten CM, Laroia N, Ehrenkranz RA, Dudell G, Cristofalo EA, Meier P, Lee ML, Rechtman DJ, Lucas A. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156:562–7.

    Google Scholar 

  55. Ramani M, Ambalavanan N. Feeding practices and necrotizing enterocolitis. Clin Perinatol. 2013;40:1–10.

    Google Scholar 

  56. Cristofalo EA, Schanler RJ, Blanco CL, Sullivan S, Trawoeger R Kiechl-Kohlendorfer U, Dudell G, Rechtman DJ, Lee ML, Lucas A, Abrams S. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr. 2013;163:1592–5. e1. doi:10.1016/j.jpeds.2013.07.011. Epub 2013 Aug 20. PubMed PMID: 23968744.

    Google Scholar 

  57. Moore ER, Anderson GC, Bergman N, Dowswell T. Early skin-to-skin contact for mothers and their healthy newborn infants. Cochrane Database Syst Rev. 2012;5:CD003519.

    PubMed Central  PubMed  Google Scholar 

  58. Morley R, Fewtrell MS, Abbott RA, Stephenson T, MacFadyen U, Lucas A. Neurodevelopment in children born small for gestational age: a randomized trial of nutrient-enriched versus standard formula and comparison with a reference breastfed group. Pediatrics. 2004;113:515–21.

    Google Scholar 

  59. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992;339:261–4.

    Google Scholar 

  60. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res. 2010;67:357–62.

    Google Scholar 

  61. Arslanoglu S, Moro GE, Ziegler EE. The WAPM working group on nutrition: optimization of human milk fortification for preterm infants: new concept and recommendations. J Perinatal Med. 2010;38:233–8.

    Google Scholar 

  62. Kuschel CA, Harding JE. Multicomponent fortified human milk for promoting growth in preterm infants. Cochrane Database Syst Rev. 2004; (1):CD000343.

    Google Scholar 

  63. Henderson G, Anthony MY, McGuire W. Formula milk versus maternal breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2007;(4):CD002972.

    Google Scholar 

  64. ESPGHAN Committee on Nutrition, Arslanoglu S, Corpeleijn W, Moro G, Braegger C, Campoy C, Colomb V, Decsi T, Domellöf M, Fewtrell M, Hojsak I, Mihatsch W, Mølgaard C, Shamir R, Turck D, van Goudoever J. Donor human milk for preterm infants: current evidence and research directions. J Pediatr Gastroenterol Nutr. 2013;57:535–42.

    Article  PubMed  Google Scholar 

  65. Vieira AA, Soares FV, Pimenta HP, Abranches AD, Moreira ME. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum Dev. 2011;87:577–80.

    Google Scholar 

  66. Prameela KK. HIV transmission through breastmilk: the science behind the understanding of current trends and future research. Med J Malaysia. 2012;67:644–51.

    Google Scholar 

  67. Lanzieri TM, Dollard SC, Josephson CD, Schmid DS, Bialek SR. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics. 2013;131:e1937–4.

    Google Scholar 

  68. Hamprecht K, Maschmann J, Jahn G, Poets CF, Goelz R. Cytomegalovirus transmission to preterm infants during lactation. J Clin Virol. 2008;41:198–205.

    Google Scholar 

  69. Goelz R, Hihn E, Hamprecht K, Dietz K, Jahn G, Poets C, Elmlinger M. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk. Pediatr Res. 2009;65:458–61.

    Google Scholar 

  70. Mihatsch WA, Franz AR, Högel J, Pohlandt F. Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics. 2002;110:1199–203.

    Google Scholar 

  71. Bar-Oz B, Preminger A, Peleg O, et al. Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001;90:356–8.

    Google Scholar 

  72. Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53:536–42.

    PubMed  CAS  Google Scholar 

  73. Bhatia J. Growth curves: how to best measure growth of the preterm infant. J Pediatr. 2013;162(Suppl 3):S2–6.

    Google Scholar 

  74. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Google Scholar 

  75. Niklasson A, Albertsson-Wikland K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 2008;8:8.

    Google Scholar 

  76. Catalano P, Thomas A, Avallone D, Amini SB. Anthropometric estimation of neonatal body composition. Am J Obstet Gynecol. 1995;173:1176–81.

    Google Scholar 

  77. te Braake F, van den Akker C, Wattimena D, Huijmans J, van Goudoever J. Amino acid administration to premature infants directly after birth. J Pediatr. 2005;147:457–61.

    Google Scholar 

  78. Ambalavanan N, Ross AC, Carlo WA. Retinol-binding protein, transthyretin, and C-reactive protein in extremely low birth weight (ELBW) infants. J Perinatol. 2005;25:714–9.

    Google Scholar 

  79. Pieltain C, de Halleux V, Senterre T, Rigo J. Prematurity and bone health. World Rev Nutr Diet. 2013;106:181–8.

    Google Scholar 

  80. Domellof M. Nutritional care of premature infants: microminerals. World Rev Nutr Diet. 2014;110:121–39.

    Google Scholar 

  81. Frondas-Chauty A, Loveau L, Le Huerou-Luron, Rozè JC, Darmaun D. Air-displacement plethysmography for determining body composition in neonates: validation using live piglets. Pediatr Res. 2012;72:26–31.

    Google Scholar 

  82. Simon L, Frondas-Chauty A, Senterre T, Flamant C, Darmaun D, Rose JC. Determination of body composition in preterm infants at the time of hospital discharge. Am J Clin Nutr. 2014;100:98–104.

    Article  PubMed  CAS  Google Scholar 

  83. Lapillonne A, O’Connor DL, Wang D, Rigo J. Nutritional recommendations for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013;162:S90–100.

    Google Scholar 

  84. D, Weaver LT. Feeding preterm infants after hospital discharge: a commentary by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2006;42:596–603.

    Google Scholar 

  85. Lapillonne A. Feeding the preterm infant after discharge. World Rev Nutr Diet. 2014;110;264–77.

    Google Scholar 

  86. Biniwale MA, Ehrenkranz RA. The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:200–8.

    Google Scholar 

  87. Lucas A, Fewtrell MS, Morley R, Singhal A, Abbott RA, Isaacs E, Stephenson T, MacFadyen UM, Clements H. Randomized trial of nutrient-enriched formula versus standard formula for postdischarge preterm infants. Pediatrics. 2001;108:703–11.

    Google Scholar 

  88. Demarini S. Calcium and phosphorus nutrition in preterm infants. Acta Paediatr Suppl. 2005;94(449):87–92.

    Google Scholar 

  89. Fewtrell MS. Growth and nutrition after discharge. Semin Neonatol. 2003;8:169–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario De Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Terrin, G., Senterre, T., Rigo, J., De Curtis, M. (2016). Enteral Nutrition in Preterm Neonates. In: Guandalini, S., Dhawan, A., Branski, D. (eds) Textbook of Pediatric Gastroenterology, Hepatology and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-17169-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17169-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17168-5

  • Online ISBN: 978-3-319-17169-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics