Skip to main content

Network-Based Unsupervised Learning

  • Chapter
Machine Learning in Complex Networks

Abstract

In this chapter, we present representative state-of-the-art unsupervised learning techniques that rely on networked environments to conduct the learning process. In a typical unsupervised task, no external knowledge is presented to the algorithm. As such, the learning process is guided by the provided data, since no prior knowledge about the existing groups is supplied. For network-based methods, the learning procedure is performed by navigating in networks that are constructed from the input data set according to some similarity criterion. As networks naturally embody topological information of data relationships, network-based methods take advantage over algorithms that make use of raw, vector-based data. Moreover, network-based methods can be conceived as a general solution for unsupervised learning tasks even for data sets that are not represented by networks. In this case, we can apply network formation techniques on that data set to generate a network from the input data. Once the network is constructed, all of the network-based techniques described in this chapter can effectively be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chap. 4 for a thorough review on network formation methods and similarity functions.

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, P.C.J., Ritort, F., Spigler, R.: The kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  2. Alpert, C.J., Kahng, A.B., Yao, S.Z.: Spectral partitioning with multiple eigenvectors. Discret. Appl. Math. 90(1-3), 3–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arenas, A., Guilera, A.D., Pérez Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

    Article  Google Scholar 

  4. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176 (2007)

    Article  MathSciNet  Google Scholar 

  5. Borgwardt, K.M.: Graph kernels. Ph.D. thesis, Ludwig-Maximilians-Universitöt München, Germany (2007)

    Google Scholar 

  6. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  7. Buchanan, M.: Nexus: Small Worlds and the Groundbreaking Theory of Networks. W.W. Norton, New York (2003)

    Google Scholar 

  8. Burt, R.S.: Structural holes: the social structure of competition. Harvard University Press, Cambridge, MA (1992)

    Google Scholar 

  9. Cao, X., Wang, X., Jin, D., Cao, Y., He, D.: Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization. Sci. Rep. 3, 2993 (2013)

    Google Scholar 

  10. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  11. Chen, M., Kuzmin, K., Szymanski, B.: Community detection via maximization of modularity and its variants. IEEE Trans. Comput. Soc. Syst. 1(1), 46–65 (2014)

    Article  Google Scholar 

  12. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  13. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111+ (2004)

    Google Scholar 

  14. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  15. Cox, T.F., Cox, M.: Multidimensional Scaling. Chapman & Hall/CRC, London/Boca Raton (2000)

    MATH  Google Scholar 

  16. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  17. de Oliveira, T., Zhao, L.: Complex network community detection based on swarm aggregation. In: International Conference on Natural Computation, vol. 7, pp. 604–608. IEEE, New York (2008)

    Google Scholar 

  18. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17(5), 420–425 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80(1), 016105 (2009)

    Article  Google Scholar 

  20. Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9(6), 180 (2007)

    Article  Google Scholar 

  21. Févotte, C., Bertin, N., Durrieu, J.L.: Nonnegative matrix factorization with the itakura-saito divergence: with application to music analysis. Neural Comput. 21(3), 793–830 (2009)

    Article  MATH  Google Scholar 

  22. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  23. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  24. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Phys. Rev. E 70(5), 056104 (2004)

    Article  Google Scholar 

  25. Freeman, L.C.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  26. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. 5(1), 49–58 (2003)

    Article  Google Scholar 

  28. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  30. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)

    Article  Google Scholar 

  31. Guimera, R., Sales-Pardo, M., Amaral, L.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004)

    Article  Google Scholar 

  32. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938 (2008)

    Article  Google Scholar 

  33. Gupta, M., Gao, J., Aggarwal, C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hofman, J.M., Wiggins, C.H.: Bayesian approach to network modularity. Phys. Rev. Lett. 100(25), 258701+ (2008)

    Google Scholar 

  35. Jin, J., Pawson, T.: Modular evolution of phosphorylation-based signalling systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367(1602), 2540–55 (2012)

    Article  Google Scholar 

  36. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)

    Article  Google Scholar 

  37. Kawamoto, T., Kabashima, Y.: Limitations in the spectral method for graph partitioning: detectability threshold and localization of eigenvectors. Phys. Rev. E 91, 062803 (2015)

    Article  Google Scholar 

  38. Kiss, G.R., Armstrong, C., Milroy, R., Piper, J.R.I.: An associative thesaurus of English and its computer analysis. In: The Computer and Literary Studies. University Press, Edinburgh (1973)

    Google Scholar 

  39. Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B 56 (2007)

    Google Scholar 

  40. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)

    Book  MATH  Google Scholar 

  41. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84, 066122 (2011)

    Article  Google Scholar 

  42. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110(1–5) (2008)

    Google Scholar 

  43. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  44. Li, D., Leyva, I., Almendral, J.A., Sendina-Nadal, I., Buldu, J.M., Havlin, S., Boccaletti, S.: Synchronization interfaces and overlapping communities in complex networks. Phys. Rev. Lett. 101(16), 168701 (2008)

    Article  Google Scholar 

  45. Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley, New York (2010)

    Book  Google Scholar 

  46. Lusseau, D.: The emergent properties of a dolphin social network. Proc. R. Soc. B Biol. Sci. 270(Suppl 2), S186–S188 (2003)

    Article  Google Scholar 

  47. Ma, Y., Zhu, L.: A review on dimension reduction. Int. Stat. Rev. 81(1), 134–150 (2013)

    Article  MathSciNet  Google Scholar 

  48. Moreno, Y., Vazquez-Prada, M., Pacheco, A.F.: Fitness for synchronization of network motifs. Physica A 343, 279–287 (2004)

    Article  Google Scholar 

  49. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016107 (2008)

    Article  MathSciNet  Google Scholar 

  50. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, River Edge, NJ (2007)

    MATH  Google Scholar 

  51. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)

    Article  Google Scholar 

  52. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  53. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Soc. Networks 27, 39–54 (2005)

    Article  Google Scholar 

  54. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  55. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  56. Newman, M.E.J.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013)

    Article  Google Scholar 

  57. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. Lett. 69, 026113 (2004)

    Google Scholar 

  58. Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104(23), 9564–9569 (2007)

    Article  MATH  Google Scholar 

  59. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), 03024 (2009)

    Article  Google Scholar 

  60. Oh, E., Rho, K., Hong, H., Kahng, B.: Modular synchronization in complex networks. Phys. Rev. E 72, 047101 (2005)

    Article  Google Scholar 

  61. de Oliveira, T., Zhao, L., Faceli, K., de Carvalho, A.: Data clustering based on complex network community detection. In: IEEE Congress on Evolutionary Computation, pp. 2121–2126. IEEE, New York (2008)

    Google Scholar 

  62. Oliveira, T.B.S.: Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada (2008). Master Thesis. Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo (USP)

    Google Scholar 

  63. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  64. Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28(3), R67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Article  MATH  Google Scholar 

  66. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10, 284–293 (2004)

    MathSciNet  MATH  Google Scholar 

  67. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detection using bayesian non-negative matrix factorization. Phys. Rev. E 83, 066114 (2011)

    Article  Google Scholar 

  68. Quiles, M.G., Zhao, L., Alonso, R.L., Romero, R.A.F.: Particle competition for complex network community detection. Chaos 18(3), 033107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  70. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a potts model. Phys. Rev. Lett. 93(21), 218701(1–4) (2004)

    Google Scholar 

  71. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. 104(18), 7327–7331 (2007)

    Article  Google Scholar 

  72. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  73. Ruszczyński, A.P.: Nonlinear optimization. Princeton University Press, Princeton, NJ (2006)

    MATH  Google Scholar 

  74. Sarveniazi, A.: An actual survey of dimensionality reduction. Am. J. Comput. Math. 4, 55–72 (2014)

    Article  Google Scholar 

  75. Schmidt, M.N., Winther, O., Hansen, L.K.: Bayesian non-negative matrix factorization. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, vol. 5441, pp. 540–547. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  76. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  77. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Physica A 388(8), 1706–1712 (2009)

    Article  Google Scholar 

  78. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  79. Sun, P.G., Gao, L., Shan Han, S.: Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks. Inf. Sci. 181, 1060–1071 (2011)

    Article  MATH  Google Scholar 

  80. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  81. Topaz, C.M., Andrea, Bertozzi, L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Google Scholar 

  82. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  83. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks: [extended abstract]. In: Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 1275–1276 (2007)

    Google Scholar 

  84. Wang, F., Sun, J.: Survey on distance metric learning and dimensionality reduction in data mining. Data Min. Knowl. Disc. 29(2), 534–564 (2015)

    Article  MathSciNet  Google Scholar 

  85. Winfree, A.T.: The Geometry of Biological Time. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  86. Wu, Z., Duan, J., Fu, X.: Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69(3), 771–779 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. Xu, R., II, D.W.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Google Scholar 

  88. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  89. Zarei, M., Izadi, D., Samani, K.: Detecting overlapping community structure of networks based on vertex-vertex correlations. J. Stat. Mech. Theory Exp. 11, P11013 (2009)

    Article  Google Scholar 

  90. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy C-Means clustering. Physica A 374(1), 483–490 (2007)

    Article  Google Scholar 

  91. Zhang, X., Nadakuditi, R.R., Newman, M.E.J.: Spectra of random graphs with community structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)

    Article  Google Scholar 

  92. Zhou, H.: Distance, dissimilarity index, and network community structure. Phys. Rev. E 67(6), 061901 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, T.C., Zhao, L. (2016). Network-Based Unsupervised Learning. In: Machine Learning in Complex Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-17290-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17290-3_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17289-7

  • Online ISBN: 978-3-319-17290-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics