Skip to main content

Beam Guidance, Focal Position Shifting and Beam Profile Shaping in Ultrashort Pulsed Laser Materials Processing

  • Chapter
  • First Online:
Ultrashort Pulse Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 195))

  • 3457 Accesses

Abstract

In ultrashort pulsed (USP) laser micro-processing several optical and optomechanical components are needed to enable the desired process. Besides the USP laser itself, systems to guide and focus the laser beam are mandatory in almost all applications. Furthermore beam profile shaping , e.g. the creation of top-hat or super-Gaussian beam profiles, results in beneficial effects for many applications, such as increased efficiency and superior quality. In this chapter an overview of both established and up-to-date technologies regarding beam guiding , focal position shifting and beam profile shaping will be presented. For beam guidance and focal position shifting comparable key parameters will be stated to enable easy comparability. As an outlook on probable future applications, both temporal and spatial polarization profile shaping will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some macro-processing applications the collimated laser beam passes the focusing optics before angular deflection. This enables larger working areas in remote processes, such as remote welding. As focal distance and thus spot size is increased, this technique is uncommon in micro-processing.

  2. 2.

    Paraxial approximation assumes that deflection angle is low, so that sin α = tan α = α, and beam height is negligible, i.e. all beams are near to optical axis.

  3. 3.

    The term ‘F-Theta’ historically relates to the optimization of such lens combination towards linear dependence of lateral beam height after focussing (‘F’) to deflection angle before focussing (‘Theta’). In modern scanning systems, this relation is optimized by software, so that planarization of the focal plane is the main task of F-Theta lenses today.

  4. 4.

    For more details on GVD and impact on pulse duration please refer to [3].

  5. 5.

    As a numeric example a bandwidth-limited pulse of 50 fs duration and 800 nm wavelength will be lengthened to 111 fs (54 fs) after passing through 10 mm SF14 (10 mm fused silica) [4].

  6. 6.

    Alternatively, divergence and thus focal position along the beam propagation axis is varied without using focusing optics. In this case, the divergence variation is used for both the compensation of the deviation from a planar focal position induced by beam guiding and focal position shifting. This technique is sometimes used in remote processing, e.g. remote welding. In micro-processing additional focusing optics are standard.

  7. 7.

    Ablation efficiency is the amount of material ablated by the laser pulse in real process divided by the value of ablated material when the total pulse energy would have been used for ablation.

  8. 8.

    Though, further beam shaping techniques are explained in the last part of this chapter, which do not accord to this categorization.

  9. 9.

    Spatially varying retarders consist of waveplates cut into circle sectors. Every waveplate’s optical axis is arranged in such way that when all circle sectors are arranged to a full circle, TEM00 laser beams with L polarization are transformed to R or A polarization.

References

  1. S. Bruening et al., Ultrafast scan technologies for 3D-µm structuring of metal surfaces with high repetitive ps-laser pulses. Phys. Proc. 12, 105–115 (2011)

    Article  ADS  Google Scholar 

  2. E. Steiger et. al., Optimization of the structuring processes of CI(G)S thin-film solar cells with an ultrafast picosecond laser and a special beam shaping optics, in Proceedings of ICALEO 2009 (2009), pp 1292–1297

    Google Scholar 

  3. R. Paschotta, Encyclopedia of laser physics and technology (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  4. M. Rosete-Aguilar et al., Calculation of temporal spreading of ultrashort pulses propagating through optical glasses. Rev. Mex. Fis. 54(2), 141–148 (2008)

    Google Scholar 

  5. H.A.M. Snelders, J.S.C. Schweigger, His romanticism and his crystal electrical theory of matter. Isis 62(3), 328–338 (1971)

    Google Scholar 

  6. R.P. Aylward, Advanced galvanometer-based optical scanner design. Sens. Rev. 23(3), 216–222 (2003)

    Article  Google Scholar 

  7. Physik Instrumente (PI) GmbH & Co.KG, Piezo tip/tilt mirrors & scanners: fundamentals (2013), http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=300300. Accessed 11 June 2013

  8. Brimrose Corp., Introduction to acousto-optics (2013), http://www.brimrose.com/pdfandwordfiles/aointro.pdf. Accessed 11 June 2013

  9. Brimrose Corp., Introduction to A-O deflectors/scanners (2013), http://www.brimrose.com/pdfandwordfiles/aointro.pdf. Accessed 11 June 2013

  10. I.A. Walmsley et al., The role of dispersion in ultrafast optics. Rev. Sci. Instrum. 72(1), 1–29 (2001)

    Article  ADS  Google Scholar 

  11. D. Vučinić, T.J. Sejnowski, A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS ONE 2(8), 1–12 (2007)

    Google Scholar 

  12. A.E. Wallin et. al., Real-time control of optical tweezers. Proc. SPIE 6644 (2007). doi:10.1117/12.737269

  13. H. Miyajima et. al., A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope. J. MEMS 12(3), 243–251 (2003)

    Google Scholar 

  14. H. Ra, Two-dimensional MEMS scanner for dual-axes confocal microscopy. J. MEMS 16(4), 969–976 (2007)

    Article  Google Scholar 

  15. D.W. Wine et. al., Performance of a biaxial MEMS-based scanner for microdisplay applications. SPIE 4178, 186–196 (2000)

    Google Scholar 

  16. Fraunhofer IPMS, LinScan—quasi-static micro scanning mirror (2013). http://www.ipms.fraunhofer.de/common/products/MSD/linscan-e.pdf. Accessed 11 June 2013

  17. K.T. Gahagan et al., Integrated electro-optic lens/scanner in a LiTaO3 single crystal. Appl. Opt. 38(7), 1186–1190 (1999)

    Article  ADS  Google Scholar 

  18. D.A. Scrymgeour et al., Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning. Appl. Opt. 40(34), 6236–6241 (2001)

    Article  ADS  Google Scholar 

  19. K. Nakamura et.al., Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3. App. Phys. Lett. 89, 131115-1–131115-3 (2006)

    Google Scholar 

  20. P. Bechtold, D. Bauer, M. Schmidt, Beam profile deformation of fs-laser pulses during electro-optic scanning with KTN crystals. Phys. Proc. 39, 683–692 (2012)

    Article  ADS  Google Scholar 

  21. H. Hügel, T. Graf, Laser in der Fertigung (Vieweg & Teubner, Wiesbaden, 2009)

    Book  Google Scholar 

  22. J.Y. Lin, R.P. Huang, P.S. Tsai, C.H. Lee, Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator. J. Opt. A: Pure Appl. Opt. 11(015301), 1–6 (2009)

    Google Scholar 

  23. L. Brigo et. al., Water slip and friction at a solid surface. J. Phys.: Condens. Matter 20, 354016, 1–5 (2008)

    Google Scholar 

  24. U. Urmoneit, M. Dirscherl, M. Guggenmoos, Scannerspiegel trifft Adaptive Optik—Neue Systemtechnik zur schnellen 3D-Strahlablenkung, in Laser in der Elektronikproduktion und Feinwerktechnik - LEF 2006, ed. by M. Geiger, S. Polster. Meisenbach, Bamberg (2006)

    Google Scholar 

  25. U. Urmoneit, M. Dirscherl, 3D-Strahlablenkung mit Adaptivspiegelscanner. Laser 2, 38–40 (2006)

    Google Scholar 

  26. S.M. Ammons et. al., Laboratory demonstrations of multi-object adaptive optics in the visible on a 10 meter telescope. Proc. SPIE 7015, 5 (2008)

    Google Scholar 

  27. T. Bifano et. al., Micromachined deformable mirrors for adaptive optics. Proc. SPIE 4825, 10–13 (2002)

    Google Scholar 

  28. K. Bush, A. Marrs, M. Schoen, Electrostatic membrane deformable mirror characterization and applications. Proc. SPIE 5894, 58940E.1–58940E.15 (2005)

    Google Scholar 

  29. K. Bush et. al., Electrostatic membrane deformable mirror wavefront control systems: design and analysis. Proc. SPIE 5553, 28–38 (2004)

    Google Scholar 

  30. H. Ren et. al., Tunable-focus liquid lens controlled using a servo motor. Opt. Express 14(18), 8031–8036 (2006)

    Google Scholar 

  31. H. Ren, S.T. Wu, Variable-focus liquid lens by changing aperture. Appl. Phys. Lett. 86(211107), 1–3 (2005)

    Google Scholar 

  32. C. Gabay et. al., Dynamic study of a Varioptic variable focal lens. Proc. SPIE 4767, 159–165 (2002)

    Google Scholar 

  33. A.F. Naumov et. al., Liquid-crystal adaptive lenses with modal control. Opt. Lett. 23(13), 992–994 (1998)

    Google Scholar 

  34. M. Ye et. al., Properties of variable-focus liquid crystal lens and its application in focusing system. Opt. Rev. 14(4), 173–175 (2007)

    Google Scholar 

  35. A. Mermillod-Blondin, E. McLeod, C.B. Arnold, High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt. Lett. 33(18), 2146–2148 (2008)

    Article  ADS  Google Scholar 

  36. M. Krishnamurthi et. al., Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses. Appl. Phys. Lett. 90(201106), 1–3 (2007)

    Google Scholar 

  37. A. Kaplan, N. Friedman, N. Davidson, Acousto-optic lens with very fast focus scanning. Opt. Lett. 26(14), 1078–1080 (2001)

    Article  ADS  Google Scholar 

  38. D. Keming, Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor. Proc. SPIE 7202, 72020Q–72020Q-9 (2010)

    Google Scholar 

  39. A. Laskin, V. Laskin, Advanced refractive beam shaping optics for advanced laser technologies, in Proceedings of PICALO 2010 Paper 1005 (2010), pp. 1–6

    Google Scholar 

  40. F.M. Dickey, C.H. Scott, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, New York, 2000)

    Google Scholar 

  41. S. Haas et al., High speed laser processing for monolithical series connection of silicon thin-film modules. Prog. Photovolt: Res. Appl. 16, 195–203 (2008)

    Article  Google Scholar 

  42. S. Haas et al., Analysis of the laser ablation processes for thin-film silicon solar cells. Appl. Phys. A 92(4), 755–759 (2008)

    Article  ADS  Google Scholar 

  43. J.A. Hoffnagle, C.M. Jefferson, Design and performance of a refractive optical system that converts a gaussian to a flattop beam. Appl. Opt. 39, 5488–5499 (2000)

    Article  ADS  Google Scholar 

  44. W.B. Veldkamp, Laser beam profile shaping with interlaced binary diffraction gratings. Appl. Opt. 21(17), 3209–3212 (1982)

    Article  ADS  Google Scholar 

  45. E. Jäger et al., Vorrichtung zur Strahlformung eines Laserstrahls. Offenlegungsschrift DE102010005774A1 (2011)

    Google Scholar 

  46. I. Gur, D. Mendlovic, Diffraction limited domain top-hat generator. Opt. Comm. 145, 237–248 (1998)

    Article  ADS  Google Scholar 

  47. I. Harder, et. al., Homogenization and beam shaping with micro lens arrays. Proc. SPIE 5456, 99–107 (2004)

    Google Scholar 

  48. B. Besold, N. Lindlein, Fractional Talbot effect for periodic micro lens arrays. Opt. Eng. 36(44), 1099–1105 (1997)

    Article  ADS  Google Scholar 

  49. F. Wippermann, et. al., Beam homogenizers based on chirped micro lens arrays. Opt. Expr. 15, 6218-6231 (2007)

    Google Scholar 

  50. K. Iwasaki et al., Practical magneto-optic spatial light modulator with single magnetic domain pixels. IEEE Trans. Magn. 44(11), 3296–3299 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  51. R.M. Boysel, A 1920 X 1080 element deformable or device for high definition displays. IEEE Trans. Electron Devices 38(12), 2715 (1991)

    Article  ADS  Google Scholar 

  52. Hong, H. John et al., Photovoltaic spatial light modulator. J. Appl. Phys. 69, 2835–2840 (1991)

    Article  ADS  Google Scholar 

  53. T.L. Worchesky et al., Large arrays of spatial light modulators hybridized to silicon integrated circuits. App. Opt. 35(8), 1180–1186 (1996)

    Article  ADS  Google Scholar 

  54. Hamamatsu datasheet and user guideline for X 10496

    Google Scholar 

  55. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237 (1972)

    Google Scholar 

  56. J. Liesener et al., Multi-functional optical tweezers using computer-generated holograms. Opt. Comm. 185, 77–82 (2000)

    Article  ADS  Google Scholar 

  57. S. Hasegawa et al., Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt. Lett. 31(11), 1705–1707 (2006)

    Article  ADS  Google Scholar 

  58. S. Hasegawa, Y. Hayasaki, Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on a liquid crystal spatial light modulator. Opt. Rev. 14(4), 208–213 (2007)

    Article  Google Scholar 

  59. Z. Kuang et al., Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. App. Surf. Sci. 255(13–14), 6582–6588 (2009)

    Article  ADS  Google Scholar 

  60. J. Liang et al., Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression. Appl. Opt. 51(1616), 3294–3304 (2012)

    Article  ADS  Google Scholar 

  61. L. Ma et al., Partition calculation for zero-order and conjugate image removal in digital in-line holography. Opt. Exp. 20(2), 1805–1815 (2012)

    Article  ADS  Google Scholar 

  62. A. Jesacher et al., Diffractive optical tweezers in the Fresnel regime. Opt. Exp. 12(10), 2243–2250 (2004)

    Article  ADS  Google Scholar 

  63. D. Liu et al., Picosecond laser beam shaping using a spatial light modulator. Proc. of ICALEO 2012, 735–738 (2012)

    Google Scholar 

  64. N. Matsumoto et al., High-quality generation of a multispot pattern using a spatial light modulator with adaptive feedback. Opt. Lett. 37(15), 3135–3137 (2012)

    Article  ADS  Google Scholar 

  65. Z. Kuang et al., Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns. Appl. Surf. Sci. 258, 7601–7606 (2012)

    Article  ADS  Google Scholar 

  66. Z. Kuang et al., Diffractive multi-beam surface micro-processing using 10 ps laser pulses. Appl. Surf. Sci. 255, 9040–9044 (2009)

    Article  ADS  Google Scholar 

  67. M. Sakakura et al., Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Exp. 18(12), 12136–12143 (2010)

    Article  ADS  Google Scholar 

  68. A. Jesacher, M.J. Booth, Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Exp. 18(20), 21090–21099 (2010)

    Article  ADS  Google Scholar 

  69. O.E. Martinez, Stabilization, attenuation and shaping of picosecond laser pulses by two-photon absorption in dyes. Opt. Qant. Electr. 11, 223–228 (1979)

    Article  ADS  Google Scholar 

  70. P. Simon, J.H. Klein-Wiele, Vorrichtung und Verfahren zur Strahlhomogenisierung von Ultrakurzpulslasern. Patent No. DE10249532, Deutsches Patent- und Markenamt (2004)

    Google Scholar 

  71. A. Mermillod-Blondin, E. McLeod, C.B. Arnold, Dynamic pulsed-beam shaping using a TAG lens in the near UV. Appl. Phys. A 93, 231–234 (2008)

    Article  ADS  Google Scholar 

  72. T. Brixner, G. Gerger, Femtosecond polarization shaping. Opt. Lett. 26(8), 557–559 (2001)

    Article  ADS  Google Scholar 

  73. M. Plewicki et. al., Independent control over the amplitude, phase and polarization of femtosecond pulses. Appl. Phys. B 86, 259–263 (2007)

    Google Scholar 

  74. T. Brixner et al., Adaptive shaping of femtosecond polarization profiles. J. Opt. Soc. Am. B 20(5), 878–881 (2003)

    Article  ADS  Google Scholar 

  75. V.G. Niziev, A.V. Nesterov, Influence of beam polarization on laser cutting efficiency. A. Phys. D 32, 1455–1461 (1999)

    Article  ADS  Google Scholar 

  76. R. Oron et. al., The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77(21), 3322–3324 (2000)

    Google Scholar 

  77. G. Machavariani et. al., Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32(11), 1468–1470 (2007)

    Google Scholar 

  78. M. Stalder, M. Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21(23), 1948–1950 (1996)

    Article  ADS  Google Scholar 

  79. O.J. Allegre et al., Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses. J. Opt. 14(8), 085601 (2012)

    Article  ADS  Google Scholar 

  80. O.J. Allegre et al., Ultra-short pulse laser micro-machining of metals with radial and azimuthal polarization. Proceedings of ICALEO 2011, 917–925 (2011)

    Google Scholar 

  81. A. Mermillod-Blondin, Size correction in ultrafast laser processing of fused silica by temporal pulse shaping. Appl. Phys. Lett. 93(2), 021921 (2008)

    Article  ADS  Google Scholar 

  82. P. Bechtold, R. Hohenstein , M. Schmidt, Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics. Opt. Exp. 21(12), 14627–14635 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bechtold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bechtold, P., Zimmermann, M., Roth, S., Alexeev, I., Schmidt, M. (2016). Beam Guidance, Focal Position Shifting and Beam Profile Shaping in Ultrashort Pulsed Laser Materials Processing. In: Nolte, S., Schrempel, F., Dausinger, F. (eds) Ultrashort Pulse Laser Technology. Springer Series in Optical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-17659-8_12

Download citation

Publish with us

Policies and ethics