Skip to main content

Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2015)

Abstract

Packing and vehicle routing problems play an important role in the area of supply chain management. In this paper, we introduce a non-linear knapsack problem that occurs when packing items along a fixed route and taking into account travel time. We investigate constrained and unconstrained versions of the problem and show that both are \(\mathcal {NP}\)-hard. In order to solve the problems, we provide a pre-processing scheme as well as exact and approximate mixed integer programming (MIP) solutions. Our experimental results show the effectiveness of the MIP solutions and in particular point out that the approximate MIP approach often leads to near optimal results within far less computation time than the exact approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Cook, W.J., Rohe, A.: Chained lin-kernighan for large traveling salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

    Article  MathSciNet  Google Scholar 

  2. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, pp. 1037–1044. IEEE, Cancun, June 20–23, 2013

    Google Scholar 

  4. Bretthauer, K.M., Shetty, B.: The nonlinear knapsack problem - algorithms and applications. European Journal of Operational Research 138(3), 459–472 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  Google Scholar 

  6. Elhedhli, S.: Exact solution of a class of nonlinear knapsack problems. Oper. Res. Lett. 33(6), 615–624 (2005)

    Article  MathSciNet  Google Scholar 

  7. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multi-objective knapsack problems. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  9. Hochbaum, D.S.: A nonlinear knapsack problem. Oper. Res. Lett. 17(3), 103–110 (1995)

    Article  MathSciNet  Google Scholar 

  10. Li, H.L.: A global approach for general 0–1 fractional programming. European Journal of Operational Research 73(3), 590–596 (1994)

    Article  Google Scholar 

  11. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing problem: past and future trends. Expert Systems with Applications 41(4, Part 1), 1118–1138 (2014)

    Article  Google Scholar 

  12. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons (1990)

    Google Scholar 

  13. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: Arnold, D.V. (ed.) GECCO, pp. 477–484. ACM (2014)

    Google Scholar 

  14. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)

    Article  Google Scholar 

  15. Sherali, H., Adams, W.: A Reformulation Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. J Kluwer Academic Publishing, Boston (1999)

    Book  Google Scholar 

  16. Tawarmalani, M., Ahmed, S., Sahinidis, N.: Global optimization of 0–1 hyperbolic programs. Journal of Global Optimization 24(4), 385–416 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Polyakovskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Polyakovskiy, S., Neumann, F. (2015). Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics