Skip to main content

Towards a Brain-Machine System for Auditory Scene Analysis

  • Chapter
Wearable Electronics Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 15))

Abstract

In hearing aids, noise suppression algorithms that rely on spatial cues tend to improve the intelligibility of speech in noisy environments [1], [2], [3], [4]. Unfortunately, the location of target and noise sources can change rapidly in a natural, everyday acoustic environment. In fact, depending on what the listener is attending to, one source may be considered noise in one instant, and then considered the target in another instant. Adaptive filtering attempts to track the target source, but it is successful only under a set of simplifying constraints [5], [6]. It is much more effective to allow the user to determine the direction from which the target sound is coming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jang, H., Song, J., Jeong, H.: Advanced narrow speech channeling algorithm for robot speech recognition. In: Proceedings of the 2009 International Conference on Hybrid Information Technology, pp. 130–137. ACM (2009)

    Google Scholar 

  2. Gravel, J.S., Fausel, N., Liskow, C., Chobot, J.: Children’s speech recognition in noise using omni-directional and dual-microphone hearing aid technology. Ear and Hearing 20(1), 1–11 (1999)

    Article  Google Scholar 

  3. Chung, K., Zeng, F.-G., Acker, K.N.: Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance. The Journal of the Acoustical Society of America 120(4), 2216–2227 (2006)

    Article  Google Scholar 

  4. Ricketts, T., Galster, J., Tharpe, A.M.: Directional benefit in simulated classroom environments. American Journal of Audiology 16(2), 130–144 (2007)

    Article  Google Scholar 

  5. Wang, D.: Time-frequency masking for speech separation and its potential for hearing aid design. Trends in Amplification 12(4), 332–353 (2008)

    Article  Google Scholar 

  6. Boldt, J., Kjems, U., Pedersen, M.S., Lunner, T., Wang, D.: Estimation of the ideal binary mask using directional systems. In: International Workshop on Acoustic Echo and Noise Control, IWAENC 2008 (2008)

    Google Scholar 

  7. Goetze, S., Rohdenburg, T., Hohmann, V., Kollmeier, B., Kammeyer, K.-D.: Direction of arrival estimation based on the dual delay line approach for binaural hearing aid microphone arrays. In: International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2007, pp. 84–87. IEEE (2007)

    Google Scholar 

  8. Shinn-Cunningham, B.G., Best, V.: Selective attention in normal and impaired hearing. Trends in Amplification 12(4), 283–299 (2008)

    Article  Google Scholar 

  9. Morla, A.: Four transformative patient demands: convenience, size, simplicity, and flexibility. Hearing Review 18(4), 36–42 (2011)

    Google Scholar 

  10. Witt, H., Nicolai, T., Kenn, H.: Designing a wearable user interface for hands-free interaction in maintenance applications. In: PerCom Workshops, pp. 652–655 (2006)

    Google Scholar 

  11. Oulasvirta, A., Bergstrom-Lehtovirta, J.: Ease of juggling: studying the effects of manual multitasking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3103–3112. ACM (2011)

    Google Scholar 

  12. Ng, A., Brewster, S.A., Williamson, J.: The impact of encumbrance on mobile interactions. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119, pp. 92–109. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. D’albis, T., Blatt, R., Tedesco, R., Sbattella, L., Matteucci, M.: A predictive speller controlled by a brain-computer interface based on motor imagery. ACM Transactions on Computer-Human Interaction (TOCHI) 19(3), 20 (2012)

    Google Scholar 

  14. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the p300 speller. Journal of Neural Engineering 3(4), 299 (2006)

    Article  Google Scholar 

  15. Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D.J., Vaughan, T.M., et al.: A p300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology 119(8), 1909–1916 (2008)

    Article  Google Scholar 

  16. Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics 25(3), 614–627 (2009)

    Article  Google Scholar 

  17. Gao, S., Wang, Y., Gao, X., Hong, B.: Visual and auditory brain-computer interfaces. IEEE Transactions on Biomedical Engineering 61(5), 1436–1447 (2014)

    Article  Google Scholar 

  18. Lopez-Gordo, M.A., Fernandez, E., Romero, S., Pelayo, F., Prieto, A.: An auditory brain–computer interface evoked by natural speech. Journal of Neural Engineering 9(3), 036013 (2012)

    Google Scholar 

  19. Klobassa, D.S., Vaughan, T.M., Brunner, P., Schwartz, N.E., Wolpaw, J.R., Neuper, C., Sellers, E.W.: Toward a high-throughput auditory p300-based brain–computer interface. Clinical Neurophysiology 120(7), 1252–1261 (2009)

    Article  Google Scholar 

  20. Guo, J., Gao, S., Hong, B.: An auditory brain–computer interface using active mental response. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(3), 230–235 (2010)

    Article  Google Scholar 

  21. Höller, Y., Kronbichler, M., Bergmann, J., Crone, J.S., Ladurner, G., Golaszewski, S.: Eeg frequency analysis of responses to the own-name stimulus. Clinical Neurophysiology 122(1), 99–106 (2011)

    Article  Google Scholar 

  22. Hanson, V., Odame, K.: Real-time embedded implementation of the binary mask algorithm for hearing prosthetics. IEEE Transactions on Biomedical Circuits and Systems (2013)

    Google Scholar 

  23. Polich, J.: Habituation of p300 from auditory stimuli. Psychobiology 17(1), 19–28 (1989)

    Google Scholar 

  24. O’Sullivan, J.A., Power, A.J., Mesgarani, N., Rajaram, S., Foxe, J.J., Shinn-Cunningham, B.G., Slaney, M., Shamma, S.A., Lalor, E.C.: Attentional selection in a cocktail party environment can be decoded from single-trial eeg. Cerebral Cortex, bht355 (2014)

    Google Scholar 

  25. Ding, N., Simon, J.Z.: Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences 109(29), 11854–11859 (2012)

    Article  Google Scholar 

  26. Lunner, T.: Method of operating a hearing instrument based on an estimation of present cognitive load of a user and a hearing aid system. US Patent App. 12/642,345 (December 18, 2009)

    Google Scholar 

  27. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on Biomedical Engineering 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  28. Daubigney, L., Pietquin, O., et al.: Single-trial p300 detection with kalman ltering and svms. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 399–404 (2011)

    Google Scholar 

  29. Mirghasemi, H., Fazel-Rezai, R., Shamsollahi, M.B.: Analysis of p300 classifiers in brain computer interface speller. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2006, pp. 6205–6208. IEEE (2006)

    Google Scholar 

  30. Meng, H., Freeman, M., Pears, N., Bailey, C.: Real-time human action recognition on an embedded, reconfigurable video processing architecture. Journal of Real-Time Image Processing 3(3), 163–176 (2008)

    Article  Google Scholar 

  31. Meng, H., Pears, N., Freeman, M., Bailey, C.: Motion history histograms for human action recognition. In: Embedded Computer Vision, pp. 139–162. Springer (2009)

    Google Scholar 

  32. Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution eeg and erp measurements. Clinical Neurophysiology 112(4), 713–719 (2001)

    Article  Google Scholar 

  33. Garofolo, J.S., et al.: TIMIT: acoustic-phonetic continuous speech corpus. Linguistic Data Consortium (1993)

    Google Scholar 

  34. Clinton, H.: Remarks on american leadership. Council on Foreign Relations (January 31, 2013)

    Google Scholar 

  35. Tillerson, R.: The new north american energy paradigm: Reshaping the future, Council on Foreign Relations (June 27, 2012)

    Google Scholar 

  36. Perelmouter, J., Birbaumer, N.: A binary spelling interface with random errors. IEEE Transactions on Rehabilitation Engineering 8(2), 227–232 (2000)

    Article  Google Scholar 

  37. Johnson, R.: On the neural generators of the p300 component of the event-related potential. Psychophysiology 30(1), 90–97 (1993)

    Article  Google Scholar 

  38. Polich, J.: Updating p300: an integrative theory of p3a and p3b. Clinical Neurophysiology 118(10), 2128–2148 (2007)

    Article  Google Scholar 

  39. Stuermann, B.: Auto zoomcontrol-objective and subjective benefits with auto zoomcontrol. Phonak Field Study News (2011)

    Google Scholar 

  40. Jang, G.-J., Lee, T.-W.: A maximum likelihood approach to single-channel source separation. The Journal of Machine Learning Research 4, 1365–1392 (2003)

    MathSciNet  Google Scholar 

  41. Davies, M.E., James, C.J.: Source separation using single channel ica. Signal Processing 87(8), 1819–1832 (2007)

    Article  MATH  Google Scholar 

  42. Lunner, T., Neher, T.: Automatic real-time hearing aid fitting based on auditory evoked potentials. US Patent App. 13/651,032 (October 12, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hanson, V., Odame, K. (2015). Towards a Brain-Machine System for Auditory Scene Analysis. In: Mukhopadhyay, S. (eds) Wearable Electronics Sensors. Smart Sensors, Measurement and Instrumentation, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18191-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18191-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18190-5

  • Online ISBN: 978-3-319-18191-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics