Skip to main content

A Variational Model for Color Assignment

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

Color image enhancement is a challenging task in digital imaging with many applications. This paper contributes to image enhancement methods. We propose a new variational model for color improvement in the RGB space based on a desired target intensity image. Our model improves the visual quality of the color image while it preserves the range and takes the hue of the original, badly exposed image into account without amplifying its color artifacts. To approximate the hue of the original image we use the fact that affine transforms are hue preserving. To cope with the noise in the color channels we design a particular coupled TV regularization term. Since the target intensity of the image is unaltered our model respects important image structures. Numerical results demonstrate the very good performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleysson, D., Süsstrunk, S., Herault, J.: Linear demosaicing inspired by the human visual system. IEEE Transactions on Image Processing 14(4), 439–449 (2005)

    Article  Google Scholar 

  2. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Transactions on Image Processing 16(4), 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  3. Burger, M., Sawatzky, A., Steidl, G.: First Order Algorithms in Variational Image Processing (2014). arXiv preprint arXiv:1412.4237

  4. Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Condat, L.: A new color filter array with optimal properties for noiseless and noisy color image acquisition. IEEE Transactions on Image Processing 20(8), 2200–2210 (2011)

    Article  MathSciNet  Google Scholar 

  6. Getreuer, P.: Automatic color enhancement (ACE) and its fast implementation. Image Processing On Line (2012). doi:10.5201/ipol.2012.g-ace

  7. Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural total variation which arises from geometric measure theory. SIAM Journal on Imaging Sciences 5(2), 537–563 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. NJ, Prentice-Hall (2007)

    Google Scholar 

  9. Grimalt, J.D., Moeller, M., Sbert, C., Cremers, D.: A framework for nonlocal vectorial total variation based on \(\ell ^{p, q, r}\)-norms. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) MMCVPR 2015. LNCS, vol. 8932, pp. 141–154. Springer International Publishing, Switzerland (2015)

    Chapter  Google Scholar 

  10. Häuser, S., Nikolova, M., Steidl, G.: Hue and range preserving RGB image enhancement. In: Preparation (2015). http://www.mathematik.uni-kl.de/imagepro/software/rgb-hp-enhance/

  11. Land, E.H.: The retinex theory of color vision. Scientific American 237(6) (1977)

    Google Scholar 

  12. Liang, J., Zhang, X.: Retinex by higher order total variation \(L^1\) decomposition. Journal of Mathematical Imaging and Vision (2015)

    Google Scholar 

  13. Limare, N., Petro, A.B., Sbert, C., Morel, J.M.: Retinex Poisson equation: a model for color perception. Image Processing On Line 1 (2011)

    Google Scholar 

  14. Naik, S.F., Murthy, C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Transactions on Image Processing 12(12), 1591–1598 (2003)

    Article  Google Scholar 

  15. Nikolova, M., Wen, Y.-W., Chan, R.: Exact histogram specification for digital images using a variational approach. Journal of Mathematical Imaging and Vision 46(3), 309–325 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nikolova, M.: A fast algorithm for exact histogram specification. Simple extension to colour images. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 174–185. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Nikolova, M., Steidl, G.: Fast sorting algorithm for exact histogram specification, Preprint hal-00870501 (2013)

    Google Scholar 

  18. Nikolova, M., Steidl, G.: Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement. IEEE Transactions on Image Processing 23(9), 4087–4100 (2014)

    Article  MathSciNet  Google Scholar 

  19. Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Transactions on Pattern Analysis and and Machine Intelligence 31(3), 458–474 (2009)

    Article  Google Scholar 

  20. Papadakis, N., Provenzi, E., Caselles, V.: A variational model for histogram transfer of color images. IEEE Transactions on Image Processing 30(6), 1682–1695 (2011)

    Article  MathSciNet  Google Scholar 

  21. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)

    Google Scholar 

  22. Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters 124 (2003)

    Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  24. Sapiro, G.. Vector-valued active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 680–685 (1996)

    Google Scholar 

  25. Sapiro, G., Caselles, V.: Histogram Modification via Differential Equations. Journal of Differential Equations 135(2), 238–268 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Henrik Fitschen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fitschen, J.H., Nikolova, M., Pierre, F., Steidl, G. (2015). A Variational Model for Color Assignment. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics