Skip to main content

On the Variational Limits of Lattice Energies on Prestrained Elastic Bodies

  • Conference paper
  • First Online:
Differential Geometry and Continuum Mechanics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 137))

Abstract

We study the asymptotic behavior of the discrete elastic energies in the presence of the prestrain metric G, assigned on the continuum reference configuration \(\Omega \). When the mesh size of the discrete lattice in \(\Omega \) goes to zero, we obtain the variational bounds on the limiting (in the sense of \(\Gamma \)-limit) energy. In the case of the nearest-neighbour and next-to-nearest-neighbour interactions, we derive a precise asymptotic formula, and compare it with the non-Euclidean model energy relative to G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alicandro R, Cicalese M (2004) A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J Math Anal 36:1–37

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro R, Cicalese M, Gloria A (2011) Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. Arch Ration Mech Anal 200(3):881–943

    Article  MathSciNet  MATH  Google Scholar 

  3. Alicandro R, Cicalese M, Sigalotti L (2012) Phase transitions in presence of surfactants: from discrete to continuum. Interfaces Free Bound 14(1):65–103

    Article  MathSciNet  MATH  Google Scholar 

  4. Braides A, Defranceschi A (1998) Homogenization of multiple integrals. Oxford Science Publications, Oxford

    Google Scholar 

  5. Bourgain J, Nguyen H-M (2006) A new characterization of Sobolev spaces. C R Math Acad Sci Paris 343(2):75–80

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharya K, Lewicka M, Schaffner M (2014) Plates with incompatible prestrain. Arch Ration Mech Anal (to appear)

    Google Scholar 

  7. Brezis H, Nguyen H-M (2011) On a new class of functions related to VMO. C R Math Acad Sci Paris 349(3–4):157–160

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet PG (2002) The finite element method for elliptic problems. Reprint of the 1978 original, North-Holland, Amsterdam. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia

    Google Scholar 

  9. Caillerie D, Mourad A, Raoult A (2003) Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. ESAIM Math Model Num Anal 37:681–698

    Article  MathSciNet  MATH  Google Scholar 

  10. Dacorogna B (2008) Direct methods in the calculus of variations. Springer, New York

    MATH  Google Scholar 

  11. Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Foppl-von Karman limit. J Mech Phys Solids 57(3):458–471

    Article  MathSciNet  MATH  Google Scholar 

  12. Efrati E, Sharon E, Kupferman R (2009a) Elastic theory of unconstrained non-Euclidean plates. J Mech Phys Solids 57(4):762–775

    Google Scholar 

  13. Efrati E, Sharon E, Kupferman R (2009b) Elastic theory of unconstrained non-Euclidean plates. J Mech Phys Solids 57:762–775

    Google Scholar 

  14. Espanol M, Kochmann D, Conti S, Ortiz M (2013) A \(\Gamma \)-convergence analysis of the quasicontinuum method. Multiscale Model Simul 11(3):766–794

    Article  MathSciNet  MATH  Google Scholar 

  15. Jouk P-S, Moura A, Milisic V, Michalowicz G, Raoult A, Caillerie D, Usson Y (2007) Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur J Cardio-thoracic Surg 31:916–922

    Article  MATH  Google Scholar 

  16. Jouk P-S, Raoult A. Private communication

    Google Scholar 

  17. Klein Y, Efrati E, Sharon E (2007) Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315:1116–1120

    Article  MathSciNet  MATH  Google Scholar 

  18. Kupferman R, Shamai Y (2012) Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space. Israel J Math 190:135–156

    Article  MathSciNet  MATH  Google Scholar 

  19. Kupferman R, Maor C (2014) A Riemannian approach to the membrane limit in non-Euclidean elasticity. Commun Contemp Math 16:1350052

    Google Scholar 

  20. Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci 106:22049–22054

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang H, Mahadevan L (2011) Growth, geometry and mechanics of the blooming lily. Proc Natl Acad Sci 108:5516–5521

    Article  MATH  Google Scholar 

  22. Lewicka M, Pakzad R (2011) Scaling laws for non-Euclidean plates and the \(W^{2, 2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim Calculus Var 17(4):1158–1173

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewicka M, Mahadevan L, Pakzad M (2011) The Foppl-von Karman equations for plates with incompatible strains. Proc R Soc Lond A 467:402–426

    Google Scholar 

  24. Lewicka M, Mahadevan L, Pakzad M (2014) Models for elastic shells with incompatible strains. Proc R Soc Lond A 470:216520130604

    Google Scholar 

  25. Le Dret H, Raoult A (2013) Homogenization of hexagonal lattices. Netw Heterog Media 8(2):541–572

    Article  MathSciNet  MATH  Google Scholar 

  26. Mengesha T (2012) Nonlocal Korn-type characterization of Sobolev vector fields. Commun Contemp Math 14(4):1250028

    Article  MathSciNet  Google Scholar 

  27. Meunier N, Pantz O, Raoult A (2012) Elastic limit of square lattices with three point interactions. Math Models Methods Appl Sci 22

    Google Scholar 

  28. Mourad A (2003) Description topologique de l’architecture fibreuse et modelisation mecanique du myocarde, Ph.D. thesis. Université Joseph Fourier, Grenoble, http://ljk.imag.fr/membres/Ayman.Mourad/

  29. Ortner Ch (2012) The role of the patch test in 2D atomistic-to-continuum coupling methods. ESAIM Math Model Numer Anal 46(6):1275–1319

    Article  MathSciNet  MATH  Google Scholar 

  30. Rodriguez A, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    Article  MATH  Google Scholar 

  31. Schmidt B (2008) On the passage from atomic to continuum theory for thin films. Arch Ration Mech Anal 190(1):1–55

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmidt B (2009) On the derivation of linear elasticity from atomistic models. Netw Heterog Media 4(4):789–812

    Article  MathSciNet  MATH  Google Scholar 

  33. Schloemerkemper A, Schmidt B (2009) Discrete-to-continuum limit of magnetic forces: dependence on the distance between bodies. Arch Ration Mech Anal 192(3):589–611

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M.L. was partially supported by the NSF Career grant DMS-0846996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Lewicka .

Editor information

Editors and Affiliations

Appendix

Appendix

\(\Gamma \)-convergence

We now recall the definition and some basic properties of \(\Gamma \)-convergence , that will be needed in the sequel.

Definition 10.A.1

Let \(\{I_\epsilon \}, I: X \rightarrow \overline{\mathbb {R}} = \mathbb {R} \cup \{-\infty , \infty \}\) be functionals on a metric space X. We say that \(I_\epsilon \) \(\Gamma \)-converge to I (as \(\epsilon \rightarrow 0\)), if and only if

(i) For every \(\{u_\epsilon \}, u \in X\) with \(u_\epsilon \rightarrow u\), we have: \(I(u) \le \liminf _{\epsilon \rightarrow 0} I_\epsilon (u_\epsilon ).\)

(ii) For every \(u \in X\), there exists a sequence \(u_\epsilon \rightarrow u\) such that \( I(u) = \lim _{\epsilon \rightarrow 0}I_\epsilon (u_\epsilon )\).

Theorem 10.A.2

([BD98], Chap. 7) Let \(I_\epsilon , I\) be as in Definition 10.A.1 and assume that there exists a compact set \(K \subset X\) satisfying:

$$ \inf _X I_\epsilon = \inf _KI_\epsilon , \qquad \forall \epsilon .$$

Then \( \lim _{\epsilon \rightarrow 0} (\inf _X I_\epsilon ) = \min _X I\), and moreover if \(\{u_\epsilon \}\) is a converging sequence such that

$$ \lim _{\epsilon \rightarrow 0} I_\epsilon (u_\epsilon ) = \lim _{\epsilon \rightarrow 0} (\inf _X I_\epsilon ), $$

then \(u=\lim u_\epsilon \) is a minimum of I, i.e., \(I(u) = \min _X I\).

Theorem 10.A.3

([BD98], Chap. 7) Let \(\Omega \) be an open subset of \(\mathbb {R}^n\). Any sequence of functionals \(I_\epsilon :L^2(\Omega ,\mathbb {R}^n)\rightarrow \overline{\mathbb {R}}\) has a subsequence which \(\Gamma \)-converges to some lower semicontinuous functional \(I:L^2(\Omega ,\mathbb {R}^n)\rightarrow \overline{\mathbb {R}}\). Moreover, if every subsequence of \(\{I_\epsilon \}\) has a further subsequence that \(\Gamma \)-converges to (the same limit) I, then the whole sequence \(I_\epsilon \) \(\Gamma \)-converges to I.

Convexity and Quasiconvexity

In this section \(f:\mathbb {R}^{m\times n}\rightarrow {\mathbb {R}}\) is a function assumed to be Borel measurable, locally bounded and bounded from below. Recall that the convex and quasiconvex envelopes of f, i.e., \(Cf, Qf:\mathbb {R}^{m\times n}\rightarrow {\mathbb {R}}\) are defined by

$$\begin{aligned} \begin{aligned} Cf(M)&= \text {sup} \left\{ g(M); ~~g:\mathbb {R}^{m \times n} \rightarrow \mathbb {R},~~ g \text { convex, } g \le f\right\} , \\ Qf(M)&= \text {sup} \left\{ g(M); ~~g:\mathbb {R}^{m \times n} \rightarrow \mathbb {R},~~ g \text { quasiconvex, } g \le f\right\} . \end{aligned} \end{aligned}$$

We say that f is quasiconvex, if

$$\begin{aligned} f(M) \le {\int \!\!\!\!\!\!-}_{D} f(M + \nabla \phi (x))~\mathrm {d}x, \qquad \forall M \in \mathbb {R}^{m \times n},\quad \forall \phi \in W^{1, \infty }_0 (D, \mathbb {R}^{m}), \end{aligned}$$

on every open bounded set \(D\subset \mathbb {R}^{n}\).

Theorem 10.A.4

([Dac08], Chap. 6)

  1. (i)

    When \(m=1\) or \(n=1\) then f is quasiconvex if and only if f is convex.

  2. (ii)

    For any open bounded \(D\subset \mathbb {R}^n\) there holds

    $$Qf(M) = \inf \left\{ {\int \!\!\!\!\!\!-}_D f(M+\nabla \phi (x))~\mathrm {d}x; ~ \phi \in W_0^{1,\infty }(D,\mathbb {R}^m)\right\} .$$
  3. (iii)

    Assume that, for some \(n_1+n_2 = n\) we have

    $$f(M) = f_1(M_{n_1}) + f_2(M_{n_2}), \qquad \forall M\in \mathbb {R}^{m\times n},$$

    where \(M_{n_1}\) stands for the principal minor of M consisting of its first \(n_1\) columns, while \(M_{n_2}\) is the minor of M consisting of its \(n_2\) last columns. Assume that \(f_1, f_2\) are Borel measurable and bounded from below. Then

    $$Cf= Cf_1 + Cf_2, \qquad Qf= Qf_1 + Qf_2.$$

The following classical results explain the role of convexity and quasiconvexity in the integrands of the typical integral functionals.

Theorem 10.A.5

([Dac08]) Let \(\Omega \) be a bounded open set in \(\mathbb {R}^{n}\) and let \(f: \mathbb {R}^{m\times 1} \rightarrow \mathbb {R}\) be lower semicontinuous (lsc) . Then the functional

$$ I(u) = \int _{\Omega }f(u(x))~\mathrm {d}x, \qquad \forall u \in L^{2}(\Omega , \mathbb {R}^{m}),$$

is sequentially lower semi-continuous with respect to the weak convergence in \(L^{2}(\Omega , \mathbb {R}^{m})\) if and only if f is convex.

Theorem 10.A.6

([Dac08], Chap. 9) Let \(\Omega \) be a bounded open set in \(\mathbb {R}^{n}\) and let \(f: \Omega \times \mathbb {R}^{m\times n} \rightarrow \mathbb {R}\) be Caratheodory, and satisfy the uniform growth condition

$$\begin{aligned}&\exists C_1, C_2>0, \quad \forall x\in \Omega , \quad \forall M\in \mathbb {R}^{m\times n}, \\ \nonumber&C_1|M|^2 - C_2\le f(x, M) \le C_2(1 + |M|^{2}). \end{aligned}$$
(10.A.1)

Assume that the quasiconvexification Qf of f with respect to the variable M, is also a Caratheodory function. Then for every \(u\in W^{1,2}(\Omega , \mathbb {R}^m)\) there exists a sequence \(\{u_\epsilon \}\in u+ W_0^{1,2}(\Omega , \mathbb {R}^m)\) such that, as \(\epsilon \rightarrow 0\)

$$\begin{aligned} u_\epsilon \rightharpoonup u \quad \text{ weakly } \text{ in } W^{1,2} \quad \text{ and } \quad \int _{\Omega }f(x, \nabla u_\epsilon (x))~\mathrm {d}x \rightarrow \int _{\Omega }Qf(x, \nabla u(x))~\mathrm {d}x. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewicka, M., Ochoa, P. (2015). On the Variational Limits of Lattice Energies on Prestrained Elastic Bodies. In: Chen, GQ., Grinfeld, M., Knops, R. (eds) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics & Statistics, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-18573-6_10

Download citation

Publish with us

Policies and ethics