Skip to main content

Cathode Materials with Two-Dimensional Structure

  • Chapter
Lithium Batteries
  • 7458 Accesses

Abstract

This chapter is devoted to the role of layered structured materials, since they have peculiar properties of mixed conduction for electrons and ions, so that redox reaction can be delocalized in their volume, so that they can be used as active materials of electrodes. We present the relationship between structure and electrochemical features with special attention for materials currently used as positive electrode in lithium batteries for their high capability to host foreign ions. Different crystal chemistries are examined from the basic lithiated metal dioxides structure to the very sophisticated solid solutions or composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gamble FR, Osiecki JH, Cais M, Pisharody R, DiSalvo FL, Geballe TH (1971) Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174:493–497

    Article  Google Scholar 

  2. Broadhead J, Butherus AD (1972) Rechargeable nonaqueous battery. US Patent 3,791,867. Accessed 24 July 1972

    Google Scholar 

  3. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  Google Scholar 

  4. Julien C, Nazri GA (1994) Transport properties of lithium-intercalated MoO3. Solid State Ionics 68:111–116

    Article  Google Scholar 

  5. Crouch-Baker S, Dickens PG (1989) Qualitative bonding models for some molybdenum oxide phases. Solid State Ionics 32–33:219–227

    Article  Google Scholar 

  6. Julien C (1990) Technological applications of solid state ionics. Mater Sci Eng B 6:9–15

    Article  Google Scholar 

  7. Julien C, Hussain OM, El-Farh L, Balkanski M (1992) Electrochemical studies of lithium insertion in MoO3 films. Solid State Ionics 53–56:400–404

    Article  Google Scholar 

  8. Campanella L, Pistoia G (1971) MoO3: a new electrode material for nonaqueous secondary battery applications. J Electrochem Soc 118:1905–1908

    Article  Google Scholar 

  9. Besenhard JO, Heydecke J, Wudy E, Fritz HP, Foag W (1983) Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte batteries. II. Transport properties. Solid State Ionics 8:61–71

    Article  Google Scholar 

  10. Goodenough JB (1990) Designing a reversible solid electrode. In: Akridge JR, Balkanski M (eds) Solid state microbatteries, NATO-ASI Series, Ser. B 217. Plenum, New York, pp 213–232

    Chapter  Google Scholar 

  11. Yebka B, Julien C (1997) Lithium intercalation in sputtered MoO3 films. Ionics 3:83–88

    Article  Google Scholar 

  12. Nadkarni GS, Simmons JG (1970) Electrical properties of evaporated molybdenum oxide films. J Appl Phys 41:545

    Article  Google Scholar 

  13. Goodenough JB (1971) Metallic oxides. Prog Solid State Chem 5:145–399

    Article  Google Scholar 

  14. Julien C, Nazri GA (2001) Intercalation compounds for advanced lithium batteries. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials, vol 10. Academic Press, San Diego, pp 99–184

    Chapter  Google Scholar 

  15. Bystrom A, Wilhelmi KA, Brotzen O (1950) Vanadium pentoxide a compound with five-coordinated vanadium atoms. Acta Chem Scand 4:1119–1130

    Article  Google Scholar 

  16. Bachmann HG, Ahmed FR, Barnes WH (1961) The crystal structure of vanadium pentoxide. Z Kristallogr 115:110–116

    Article  Google Scholar 

  17. Cava RJ, Santoro A, Murphy DW, Zahurak SM, Fleming RM, Marsh P, Roth RS (1986) he structure of the lithium-inserted metal oxide LiV2O5. J Solid State Chem 65:63–71

    Article  Google Scholar 

  18. Murphy DW, Christian PA, DiSalvo FJ, Carides JN, Waszczak JV (1981) Lithium incorporation by V6O13 and related vanadium (+4,+5) oxide cathode materials. J Electrochem Soc 128:2053–2060

    Article  Google Scholar 

  19. Dickens PG, French SJ, Hight AT, Pye MF (1979) Phase relationship in the ambient temperature LixV2O5 system (0.1 < x < 1.0). Mater Res Bull 14:1295–1299

    Article  Google Scholar 

  20. Galy J (1992) Vanadium pentoxide and vanadium oxide bronzes – structural chemistry of single (S) and double (D) layer MxV2O5 phases. J Solid State Chem 100:229–245

    Article  Google Scholar 

  21. West K, Zachau-Christiansen B, Jacobsen T, Skaarup S (1991) Vanadium oxides as host materials for lithium and sodium intercalation. Mater Res Soc Symp Proc 210:449–460

    Article  Google Scholar 

  22. Delmas C, Brethes S, Ménétrier M (1991) ω-LixV2O5 a new electrode material for rechargeable lithium batteries. J Power Sourc 34:113–118

    Article  Google Scholar 

  23. Leger C, Bach S, Soudan P, Pereira-Ramos JP (2005) Structural and electrochemical properties of ω-LixV2O5 (0.4 ≤ x ≤ 3) as rechargeable cathodic material for lithium batteries. J Electrochem Soc 152:A236–A241

    Article  Google Scholar 

  24. Dickens PG, Reynolds GJ (1981) Thermodynamics and kinetics of the electrochemical insertion of lithium into tungsten. Solid State Ionics 5:351–354

    Article  Google Scholar 

  25. Li WD, Xu CX, Du Y, Fang HT, Feng YJ, Zhen L (2014) Electrochemical lithium insertion behavior of β-LixV2O5 phases (0 < x ≤ 3) as cathode material for secondary lithium batteries. J Electrochem Soc 161:A75–A83

    Article  Google Scholar 

  26. Wadsley AD (1957) Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: crystal structure of Li1+xV3O8. Acta Crystallogr 10:261–267

    Article  Google Scholar 

  27. Pistoia G, Panero S, Tocci M, Moshtev R, Manev V (1984) Solid solutions Li1+xV3O8 as cathodes for high rate secondary Li batteries. Solid State Ionics 13:311–318

    Article  Google Scholar 

  28. Pasquali M, Pistoia G, Manev V, Moshtev RV (1986) Li/Li1+x V3O8 batteries. J Electrochem Soc 133:2454–2458

    Article  Google Scholar 

  29. Pistoia G, Pasquali M, Tocci M, Moshtev RV, Manev V (1985) Li/Li1+xV3O8 secondary batteries. III. Further characterization of the mechanism of Li+ insertion and of the cycling behavior. J Electrochem Soc 132:281–284

    Article  Google Scholar 

  30. Besenhard JO, Schöllhorn R (1976/1977) The discharge reaction mechanism of the MoO3 electrode in organic electrolytes. J Power Sourc 1:267–276

    Google Scholar 

  31. Schöllhorn R, Klein-Reesink F, Reimold R (1979) Formation, structure and topotactic exchange reactions of the layered hydrogen bronze HxV3O8. J Chem Soc Chem Commun 398–399

    Google Scholar 

  32. Nassau K, Murphy DW (1981) The quenching and electrochemical behaviour of Li2O-V2O5 glasses. J Non Cryst Solids 44:297–304

    Article  Google Scholar 

  33. West K, Zachau-Christiansen B, Skaarup S, Saidi Y, Barker L, Olsen II, Pynenburg R, Koksbang R (1996) Comparison of LiV3O8 cathode materials prepared by different methods. J Electrochem Soc 143:820–826

    Article  Google Scholar 

  34. Winter M, Besenhard JO, Sparhr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  Google Scholar 

  35. Pistoia G, Li L, Wang G (1992) Direct comparison of cathode materials of interest for secondary high-rate lithium cells. Electrochim Acta 37:63–68

    Article  Google Scholar 

  36. Kawakita J, Miura T, Kishi T (1999) Lithium insertion and extraction kinetics of Li1+xV3O8. J Power Sourc 83:79–83

    Article  Google Scholar 

  37. Jouanneau S, Verbaere A, Lascaud S, Guyomard D (2006) Improvement of the lithium insertion properties of Li1.1V3O8. Solid State Ionics 177:311–315

    Article  Google Scholar 

  38. Jouanneau S, Le Gal La Salle A, Verbaere A, Guyomard D (2005) The origin of capacity fading upon lithium cycling in Li1.1V3O8. J Electrochem Soc 152:A1660–A1667

    Article  Google Scholar 

  39. Xie JG, Li JX, Zhan H, Zhou YH (2003) Low-temperature sol-gel synthesis of Li1.2V3O8 from V2O5 gel. Mater Lett 57:2682–2687

    Article  Google Scholar 

  40. Kawakita J, Katayama Y, Miura T, Kishi T (1998) Lithium insertion behavior of Li1+xV3O8 prepared by precipitation technique in CH3OH. Solid State Ionics 110:199–207

    Article  Google Scholar 

  41. Liu HM, Wang YG, Wang KX, Wang YR, Zhou HS (2009) Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J Power Sourc 192:668–673

    Article  Google Scholar 

  42. Liu HM, Wang YG, Wang WS, Zhou HS (2011) A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. Electrochim Acta 56:1392–1398

    Article  Google Scholar 

  43. Si YC, Jiao LF, Yan HT, Li HX, Wang YM (2009) Structural and electrochemical properties of LiV3O8 prepared by combustion synthesis. J Alloys Compd 486:400–405

    Article  Google Scholar 

  44. Ju SH, Kang YC (2010) Morphological and electrochemical properties of LiV3O8 cathode powders prepared by spray pyrolysis. Electrochim Acta 55:6088–6092

    Article  Google Scholar 

  45. Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC (2010) Preparation, characterization and electrochemical performance of lithium trivanadate rods by a surfactant-assisted olymer precursor method for lithium batteries. J Phys Chem C 114:8099–8107

    Article  Google Scholar 

  46. Hui Y, Juan L, Zhang JG, Jia DZ (2007) Synthesis and properties of LiV3O8 nanomaterials as the cathode material for Li-ion battery. J Inorg Mater 22:447–450

    Google Scholar 

  47. Yang H, Li J, Zhang XG, Jin YL (2008) Synthesis of LiV3O8 nanocrystallites as cathode materials for lithium ion batteries. J Mater Process Technol 207:265–270

    Article  Google Scholar 

  48. Liu XH, Wang JQ, Zhang JY, Yang SR (2007) Sol-gel template synthesis of LiV3O8 nanowires. J Mater Sci 42:867–871

    Article  Google Scholar 

  49. Lee KP, Manesh KM, Kim KS, Gopalan AY (2009) Synthesis and characterization of nanostructured wires (1D) to plates (3D) LiV3O8 combining sol-gel and electrospinning processes. J Nanosci Nanotechnol 9:417–422

    Article  Google Scholar 

  50. Xu HY, Wang H, Song ZQ, Wang YW, Yan H, Yoshimura M (2004) Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim Acta 49:349–353

    Article  Google Scholar 

  51. Sun D, Jin G, Wang H, Huang X, Ren Y, Jiang J, He H, Tang Y (2014) LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries. J Mater Chem A 2:8009–8016

    Article  Google Scholar 

  52. Liu L, Jiao LF, Sun JL, Zhang YH, Zhao M, Yuan HT, Wang YM (2008) Electrochemical performance of LiV3-xNixO8 cathode materials synthesized by a novel low-temperature solid-state method. Electrochim Acta 53:7321–7325

    Article  Google Scholar 

  53. Wang H, Ren Y, Wang Y, Wang W, Liu S (2012) Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. Cryst Eng Comm 14:2831–2836

    Article  Google Scholar 

  54. Feng CQ, Chew SY, Guo ZP, Wang JZ, Liu HK (2007) An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries. J Power Sourc 174:1095–1099

    Article  Google Scholar 

  55. Kumagai N, Yu A (1997) Ultrasonically treated LiV3O8 as a cathode material for secondary lithium batteries. J Electrochem Soc 144:830–835

    Article  Google Scholar 

  56. Orman HJ, Wiseman PJ (1984) Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr C 40:12–14

    Article  Google Scholar 

  57. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B 99:81–85

    Article  Google Scholar 

  58. Venkatraman S, Manthiram A (2002) Synthesis and characterization of P3-type CoO2-δ. Chem Mater 14:3907–3912

    Article  Google Scholar 

  59. Gao Y, Yakovleva MV, Ebner WB (1998) Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochem Solid State Lett 1:117–119

    Article  Google Scholar 

  60. Cho J, Kim G, Lim HS (1999) Effect of preparation methods of LiNi1-xCoxO2 cathode materials on their chemical structure of electrode performance. J Electrochem Soc 146:3571–3576

    Article  Google Scholar 

  61. Mueller-Neuhaus JR, Dunlap RA, Dahn JR (2000) Understanding irreversible capacity in LiNi1-yFeyO2 cathode materials. J Electrochem Soc 147:3598–3605

    Article  Google Scholar 

  62. Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors. US Patent 4,302,518. Accessed 24 Nov 1981

    Google Scholar 

  63. Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209–212

    Google Scholar 

  64. Gummow RJ, Thackeray MM, David WIF, Hull S (1992) Structure and electrochemistry of lithium cobalt oxide synthesized at 400 °C. Mater Res Bull 27:327–337

    Article  Google Scholar 

  65. Shao-Horn Y, Hackney SA, Kahaian AJ, Thackeray MM (2002) Structural stability of LiCoO2 at 400 °C. J Solid State Chem 168:60–68

    Article  Google Scholar 

  66. Johnston WD, Heikes RR, Sestrich D (1958) The preparation, crystallography and magnetic properties of the LixCo(1-x)O system. J Phys Chem Solids 7:1–13

    Article  Google Scholar 

  67. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R-3 m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    Article  Google Scholar 

  68. Oh IH, Hong YS, Sun YK (1997) Low-temperature preparation of ultrafine LiCoO2 powders by the sol-gel method. J Mater Sci 32:3177–3182

    Article  Google Scholar 

  69. Julien C, El-Farh L, Rangan S, Massot M (1999) Synthesis of LiNi1-yCoyO2 cathode materials prepared by a citric acid-assisted sol-gel method for lithium batteries. J Sol Gel Sci Technol 15:63–72

    Article  Google Scholar 

  70. Santiago EI, Andrade AVC, Paiva-Santos CO, Bulhoes LOS (2003) Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis. Solid State Ionics 158:91–102

    Article  Google Scholar 

  71. Han CH, Hong YS, Park CM, Kim K (2001) Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3. J Power Sourc 92:95–101

    Article  Google Scholar 

  72. Kosova NV, Anufrienko VF, Larina TV, Rougier A, Aymard L, Tarascon JM (2002) Disordering and electronic state of cobalt ions in mechanochemically synthesized LiCoO2. J Solid State Chem 165:56–64

    Article  Google Scholar 

  73. Brylev OA, Shlyakhtin OA, Kulova TL, Skundin AM, Tretyakov YD (2003) Influence of chemical prehistory on the phase formation and electrochemical performance of LiCoO2 materials. Solid State Ionics 156:291–299

    Article  Google Scholar 

  74. Larcher D, Polacin MR, Amatucci GG, Tarascon JM (1997) Electrochemically active LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions. J Electrochem Soc 144:408–417

    Article  Google Scholar 

  75. Yan H, Huang X, Zhonghua L, Huang H, Xue R, Chen L (1997) Microwave synthesis of LiCoO2 cathode materials. J Power Sourc 68:530–532

    Article  Google Scholar 

  76. Akimoto J, Gotoh Y, Oosawa Y (1998) Synthesis and structure refinement of LiCoO2 single crystals. J Solid State Chem 141:298–302

    Article  Google Scholar 

  77. Amatucci GG, Tarascon JM, Klein LC (1996) CoO2, the end member of the LixCoO2 solid solution. J Electrochem Soc 143:1114–1123

    Article  Google Scholar 

  78. Chebiam RV, Prado F, Manthiram A (2001) Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1). Chem Mater 13:2951–2957

    Article  Google Scholar 

  79. Chebiam RV, Kannan AM, Prado F, Manthiram A (2001) Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem Commun 3:624–627

    Article  Google Scholar 

  80. Delmas C, Saadoune I (1992) Electrochemical and physical properties of the LixNi1-yCoyO2 phases. Solid State Ionics 53–56:370–375

    Article  Google Scholar 

  81. Venkatraman S, Shin Y, Manthiram A (2003) Phase relationships and structural and chemical stabilities of charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ cathodes. Electrochem Solid State Lett 6:A9–A12

    Article  Google Scholar 

  82. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097

    Article  Google Scholar 

  83. Mauger A, Julien CM (2014) Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20:751–787

    Article  Google Scholar 

  84. Laubach S, Laubach S, Schmidt C, Ensling D, Schmid S, Jaegermann W, Thissen A, Nikolowski K, Erhenberg H (2009) Changes in the crystal end electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11:3278–3289

    Article  Google Scholar 

  85. Hirano A, Kanno R, Kawamoto Y, Takeda Y, Yamamura K, Takano M, Ohyama K, Ohashi M, Yamaguchi Y (1995) Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ionics 78:123–131

    Article  Google Scholar 

  86. Ohzuku T, Ueda A, Nagayama M, Iwakashi Y, Komori H (1993) Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38:1159–1167

    Article  Google Scholar 

  87. Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequence for the safety of Li-ion cells. Solid State Ionics 69:265–270

    Article  Google Scholar 

  88. Zhang Z, Fouchard D, Rea JR (1998) Differential scanning calorimetry material studies:implications for the safety of lithium-ion cells. J Power Sourc 70:16–20

    Article  Google Scholar 

  89. Bianchi V, Caurant D, Baffier N, Belhomme C, Chappel E, Chouteau G, Bach S, Pereira-Ramos JP, Sulpice A, Wilmann P (2001) Synthesis, structural characterization and magnetic properties of quasistoichiometric LiNiO2. Solid State Ionics 140:1–17

    Article  Google Scholar 

  90. Arai H, Okada S, Yamaki J (1998) Thermal behavior of Li1-yNiO2 and the decomposition mechanism. Solid State Ionics 109:295–302

    Article  Google Scholar 

  91. Li W, Curie J (1997) Morphology effects on the electrochemical performance of LiNi1-xCoxO2. J Electrochem Soc 144:2773–2779

    Article  Google Scholar 

  92. Guilmard M, Pouillerie C, Croguennec L, Delmas C (2003) Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ionics 160:39–50

    Article  Google Scholar 

  93. Ohzuku T, Ueda A, Kouguchi M (1995) Synthesis and characterization of LiAl1/4Ni3/4O2 (R-3 m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc 142:4033–4039

    Article  Google Scholar 

  94. Delmas C, Saadoune I, Rougier A (1993) The cycling properties of the LixNi1-yCoyO2 electrode. J Power Sourc 44:595–602

    Article  Google Scholar 

  95. Kannan AM, Manthiram A (2002) Degradation of LiNi0.8Co0.2O2 cathode surfaces in high-power lithium-ion batteries. Electrochem Solid State Lett 5:A164–A166

    Article  Google Scholar 

  96. Gummow RJ, Thackeray MM (1993) Characterization of LT-LixCo1-yNiyO2 electrodes for rechargeable lithium cells. J Electrochem Soc 140:3365–3368

    Article  Google Scholar 

  97. Julien C, Letranchant C, Rangan S, Lemal M, Ziolkiewicz S, Castro-Garcia S, El-Farh L, Benkaddour M (2000) Layered LiNi0.5Co0.5O2 cathode materials grown by soft-chemistry via various solution methods. Mater Sci Eng B 76:145–155

    Article  Google Scholar 

  98. Ohzuku T, Yanagawa T, Kouguchi M, Ueda A (1997) Innovative insertion material of LiAl1/4Ni3/4O2 (R-3 m) for lithium-ion (shuttlecock) batteries. J Power Sourc 68:131–134

    Article  Google Scholar 

  99. Julien C, Nazri GA, Rougier A (2000) Electrochemical performances of layered LiM1-yMy’O2 (M = Ni, Co; M′ = Mg, Al, B) oxides in lithium batteries. Solid State Ionics 135:121–130

    Article  Google Scholar 

  100. Julien C, Michael SS, Ziolkiewicz S (1999) Structural and electrochemical properties of LiNi0.3Co0.7O2 synthesized by different low-temperature techniques. Int J Inorg Mat 1:29–34

    Article  Google Scholar 

  101. Abdel-Ghany AE, Hashem AMA, Abuzeid HAM, Eid AE, Bayoumi HA, Julien CM (2009) Synthesis, structure characterization and magnetic properties of nanosized LiCo1-yNiyO2 prepared by sol-gel citric acid route. Ionics 15:49–59

    Article  Google Scholar 

  102. Goodenough JB (1999) Oxide engineering for advanced power sources. Electrochem Soc Proc 99–24:1–14

    Google Scholar 

  103. Julien C (2000) Local cationic environment in lithium nickel-cobalt oxides used as cathode materials for lithium batteries. Solid State Ionics 136–137:887–896

    Article  Google Scholar 

  104. Senaris-Rodriguez MA, Castro-Garcia S, Castro-Couceiro A, Julien C, Hueso LE, Rivas J (2003) Magnetic clusters in LiNi1-yCoyO2 nanomaterials used as cathodes in lithium-ion batteries. Nanotechnology 14:277–282

    Article  Google Scholar 

  105. Zhang X, Julien CM, Mauger A, Gendron F (2011) Magnetic analysis of lamellar oxides for Li-ions batteries. Solid State Ionics 188:148–155

    Article  Google Scholar 

  106. Delmas C, Ménétrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grüne M, Fournès L (1999) An overview of the Li(Ni, M)O2 systems: synthesis, structure and properties. Electrochim Acta 45:243–253

    Article  Google Scholar 

  107. Caurant D, Baffier N, Bianchi V, Grégoire G, Bach S (1996) Preparation by a chimie douce route and characterization of LiNizMn1-zO2 (0.5 ≤ z ≤ 1) cathode materials. J Mater Chem 6:1149–1155

    Article  Google Scholar 

  108. Julien C, Castro-Garcia S (2001) Lithiated cobaltates for Li-ion batteries. Structure, morphology and electrochemistry of oxides grown by solid-state reaction, wet chemistry and film deposition. J Power Sourc 97–98:290–293

    Article  Google Scholar 

  109. Ramana CV, Zaghib K, Julien CM (2006) Highly oriented growth of pulsed-laser deposited LiNi0.8Co0.2O2 films for application in microbatteries. Chem Mater 18:1397–1400

    Article  Google Scholar 

  110. Julien C (2000) Structure, morphology and electrochemistry of doped lithium cobalt oxides. Ionics 6:451–460

    Article  Google Scholar 

  111. Julien C (2003) Local structure and electrochemistry of lithium cobalt oxides and their doped compounds. Solid State Ionics 157:57–71

    Article  Google Scholar 

  112. Julien C, Camacho-Lopez MA, Lemal M, Ziolkiewicz S (2002) LiCo1-yMyO2 positive electrodes for rechargeable lithium batteries. I. Aluminium doped materials. Mater Sci Eng B 95:6–13

    Article  Google Scholar 

  113. Amdouni N, Zarrouk H, Soulette F, Julien C (2003) LiAlyCo1-yO2 (0.0 ≤ y ≤ 0.3) intercalation compounds synthesized from the citrate precursors. Mater Chem Phys 80:205–214

    Article  Google Scholar 

  114. Julien CM, Mauger A, Groult H, Zhang X, Gendron F (2011) LiCo1-yByO2 as cathode materials for rechargeable lithium batteries. Chem Mater 23:208–218

    Article  Google Scholar 

  115. Amdouni N, Zarrouk H, Julien C (2003) Low temperature synthesis of LiCr0.3Co0.7O2 intercalation compounds using citrate, oxalate, succinate and glycinate precursors. British Ceram Trans 102:27–30

    Article  Google Scholar 

  116. Julien C, Letranchant C, Lemal M, Ziolkiewicz S, Castro-Garcia S (2002) Layered LiNi1-yCoyO2 compounds synthesized by a glycine-assisted combustion method for lithium batteries. J Mater Sci 37:2367–2375

    Article  Google Scholar 

  117. Mazas-Brandariz D, Senaris-Rodriguez MA, Castro-Garcia S, Camacho-Lopez MA, Julien C (1999) Structural properties of LiNi1-yCoyO2 (0 ≤ y ≤ 1) synthesized by wet chemistry via malic acid-assisted technique. Ionics 5:345–350

    Article  Google Scholar 

  118. Castro-Couceiro A, Castro-Garcia S, Senaris-Rodriguez MA, Soulette F, Julien C (2002) Effects of the aluminum doping on the microstructure and morphology of LiNi0.5Co0.5O2 oxides. Ionics 8:192–200

    Article  Google Scholar 

  119. Abuzeid HA, Hashem AM, Abdel-Ghany AE, Eid AE, Mauger A, Groult H, Julien CM (2011) Study of the delithiation of LiMn0.2Co0.8O2 cathode material for lithium batteries. ECS Trans 35–34:95–102

    Article  Google Scholar 

  120. Abuzeid HAM, Hashem AMA, Abdel-Ghany AE, Eid AE, Mauger A, Groult H, Julien CM (2011) De-intercalation of LiCo0.8Mn0.2O2: a magnetic approach. J Power Sourc 196:6440–6448

    Article  Google Scholar 

  121. Wang GX, Bewlay S, Yao J (2003) Multiple-ion doped lithium nickel oxides as cathode materials for lithium-ion batteries. J Power Sourc 119–121:189–194

    Article  Google Scholar 

  122. Kostecki R, McLarnon F (2004) Local-probe studies of degradation of composite LiNi0.80Co0.15Al0.05O2 cathodes in high-power lithium-ion cells. Electrochem Solid State Lett 7:A380–A383

    Article  Google Scholar 

  123. Weaving J, Coowar F, Teagle D, Cullen J, Dass V, Bindin P, Green R, Macklin W (2001) Development of high energy density Li-ion batteries based on LiNi1-x-yCoxAlyO2. J Power Sourc 97:733–735

    Article  Google Scholar 

  124. Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.80Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J Electrochem Soc 153:A731–A737

    Article  Google Scholar 

  125. Ju S, Jang H, Kang Y (2007) Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape. Electrochim Acta 52:7286–7292

    Article  Google Scholar 

  126. Biensan P, Simon B, Pérès JP, de Guilbert A, Broussely M, Bodet JM, Perton F (1999) On safety of lithium-ion cells. J Power Sourc 81:906–912

    Article  Google Scholar 

  127. Majumdar SB, Nieto S, Katiyar RS (2006) Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries. J Power Sourc 154:262–267

    Article  Google Scholar 

  128. Chebiam RV, Prado F, Manthiram A (2001) Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes. J Electrochem Soc 148:A49–A53

    Article  Google Scholar 

  129. Cho Y, Cho J (2010) Significant improvement of LiNi0.80Co0.15Al0.05O2 cathodes at 60 °C by SiO2 dry coating for Li-ion batteries. J Electrochem Soc 157:A625–A629

    Article  Google Scholar 

  130. Cho Y, Lee YS, Park SA, Lee Y, Cho J (2010) LiNi0.80Co0.15Al0.05O2 cathodes materials prepared by TiO2 nanoparticle coatings on Ni0.80Co0.15Al0.05(OH)2 precursors. Electrochim Acta 56:333–339

    Article  Google Scholar 

  131. Lee DJ, Scrosati B, Sun YK (2011) Ni3(PO4)2-coated Li(Ni0.80Co0.15Al0.05)O2 lithium battery electrode with improved cycling performance at 55 °C. J Power Sourc 196:7742–7746

    Article  Google Scholar 

  132. Lee SH, Yoon CS, Amine K, Sun YK (2013) Improvement of long-term cycling performance of Li(Ni0.80Co0.15Al0.05)O2 by AlF3 coating. J Power Sourc 234:201–207

    Article  Google Scholar 

  133. Lim SN, Ahn W, Yeon SH, Park SB (2014) Enhanced elevated-temperature performance of LiNi0.80Co0.15Al0.05O2 electrodes coated with Li2O-2B2O3 glass. Electrochim Acta 136:1–9

    Article  Google Scholar 

  134. Ju JH, Chung YM, Bak YR, Hwang MJ, Ryu KS (2010) The effects of carbon nano-coating on Li(Ni0.80Co0.15Al0.05)O2 cathode material using organic carbon for Li-ion battery. Surf Rev Lett 17:51–58

    Article  Google Scholar 

  135. Belharouak I, Lu W, Vissers D, Amine K (2006) Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem Commun 8:329–335

    Article  Google Scholar 

  136. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 30:744–745

    Article  Google Scholar 

  137. Liu Y, Chen B, Cao F, Zhao X, Yuan J (2011) Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. J Mater Chem 21:10437–10441

    Article  Google Scholar 

  138. Abdel-Ghany A, Zaghib K, Gendron F, Mauger A, Julien CM (2007) Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries. Electrochim Acta 52:4092–4100

    Article  Google Scholar 

  139. Yamaura K, Takano M, Hirano A, Kanno R (1996) Magnetic properties of Li1-xNi1+xO2 (0 ≤ x ≤ 0.08). J Solid State Chem 127:109–118

    Article  Google Scholar 

  140. Goodenough JB (1963) Magnetism and the chemical bond. Wiley-Interscience, New York

    Google Scholar 

  141. Liu Z, Yu A, Lee JY (1999) Synthesis and characterization of LiNi1-x-yCoyMnyO2 as the cathode materials secondary lithium batteries. J Power Sourc 81–82:416–419

    Article  Google Scholar 

  142. Lu Z, MacNeil DD, Dahn JR (2001) Layred Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batterie. Electrochem Solid State Lett 4:A200–A203

    Article  Google Scholar 

  143. MacNeil DD, Lu Z, Dahn JR (2002) Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0 ≤ x ≤ 1/2). J Electrochem Soc 149:A1332–A1336

    Article  Google Scholar 

  144. Shaju KM, Subba-Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151

    Article  Google Scholar 

  145. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of Li Ni1/3Co1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sourc 119–121:171–174

    Article  Google Scholar 

  146. Lee S, Park SS (2012) Atomistic simulation study of mixed-metal oxide (LiNi1/3Mn1/3Co1/3O2) cathode material for lithium ion battery. J Phys Chem C 116:6484–6489

    Article  Google Scholar 

  147. Wang L, Li J, He X, Pu W, Wan C, Jiang C (2005) Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries. J Solid State Electrochem 13:1157–1164

    Article  Google Scholar 

  148. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954

    Article  Google Scholar 

  149. Zhu JP, Xu QB, Yang HW, Zhao JJ, Yang G (2011) Recent development of LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium ion battery. J Nanosci Nanotechnol 11:10357–10368

    Article  Google Scholar 

  150. Zeng D, Cabana J, Bréger J, Yoon WS, Grey CP (2007) Cation ordering in Li[NixMnxCo(1-2x)]O2-layered cathode materials. Chem Mater 19:6277–6289

    Article  Google Scholar 

  151. Liao PY, Duh JG, Sheen SR (2005) Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials. J Power Sourc 143:212–218

    Article  Google Scholar 

  152. Gan CL, Hu XH, Zhan H (2005) Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as cathode material for secondary lithium batteries. Solid State Ionics 176:687–692

    Article  Google Scholar 

  153. Lee JW, Lee JH, Tan-Viet T, Lee JY, Kim JS, Lee CH (2010) Synthesis of LiNi1/3Mn1/3Co1/3O2 cathode materials by using a supercritical water method in a bath reactor. Electrochim Acta 55:3015–3021

    Article  Google Scholar 

  154. Na SH, Kim HS, Moon SI (2005) The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1-x-y)O2. Solid State Ionics 176:313–317

    Article  Google Scholar 

  155. Ohzuku T, Makimura Y (2001) Layered lithium insertion material LiNi1/3Mn1/3Co1/3O2 for lithium-ion batteries. Chem Lett 30:642–643

    Article  Google Scholar 

  156. Ngala JK, Chernova NA, Ma M, Mamak M, Zavalij PY, Whittingham MS (2004) The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J Mater Chem 14:214–220

    Article  Google Scholar 

  157. Lee MH, Kang YJ, Myung ST, Sun YK (2004) Synthetic optimization of Li[Ni1/3Mn1/3Co1/3]O2 via co-precipitation. Electrochim Acta 50:939–948

    Article  Google Scholar 

  158. Oh SW, Park SH, Park CW, Sun YK (2004) Structural and electrochemical properties of layered Li(Ni0.5Mn0.5)1-xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 171:167–172

    Article  Google Scholar 

  159. Li DC, Noguchi H, Yoshio M (2004) Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2 (0 ≤ x ≤ 0.1) prepared by spray dry method. Electrochim Acta 50:427–430

    Article  Google Scholar 

  160. Wen JW, Liu J, Wu H, Chen CH (2007) Synthesis and electrochemical characterization of LiCo1/3Ni1/3Mn1/3O2 by radiated polymer gel method. J Mater Sci 42:7696–7701

    Article  Google Scholar 

  161. Ren H, Li X, Peng Z (2011) Electrochemical properties of Li[Ni1/3Mn1/3Al1/3-xCox]O2 as a catode material for litium ion battery. Electrochim Acta 56:7088–7091

    Article  Google Scholar 

  162. Du K, Peng Z, Hu G, Yang Y, Qi L (2009) Synthesis of LiMn1/3Ni1/3Co1/3O2 in molten KCl for rechargeable lithium-ion batteries. J Alloy Comp 476:329–334

    Article  Google Scholar 

  163. Sinha NN, Munichandriaah N (2010) High rate capability of porous LiNi1/3Mn1/3Co1/3O2 synthesized by polymer template route. J Electrochem Soc 157:A647–A653

    Article  Google Scholar 

  164. Samarasingh P, Tran-Nguyen DH, Behm M, Wijayasinghe A (2008) LiNi1/3Mn1/3Co1/3O2 synthesized by the Pechini method for the positive electrode in Li-ion batteries: material characteristics and electrochemical behaviour. Electrochim Acta 53:7995–8000

    Article  Google Scholar 

  165. Fujii Y, Miura H, Suzuki N, Shoji T, Nakayama N (2007) Structural and electrochemical properties of LiNi1/3 Co1/3Mn1/3O2: calcinations temperature dependence. J Power Sourc 171:894–903

    Article  Google Scholar 

  166. Park SH, Oh SW, Sun YK (2005) Synthesis and structural characterization of layered Li[Li1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J Power Sourc 146:622–625

    Article  Google Scholar 

  167. Li DC, Sasaki Y, Kobayakawa K (2006) Morphological, structural and electrochemical characteristics of LiNi0.5Mn0.4 M0.1O2 (M = Li, Mg, Co, Al). J Power Sourc 157:488–493

    Article  Google Scholar 

  168. Kim GH, Kim JH, Myung ST (2005) Improvement of high-voltage cycling behavior of surface-modified Li[Ni1/3Co1/3Mn1/3]O2 cathodes by fluorine substitution for Li-ion batteries. J Electrochem Soc 152:A1707–A1713

    Article  Google Scholar 

  169. Ben-Kamel K, Amdouni N, Abdel-Ghany A, Zaghib K, Mauger A, Gendron F, Julien CM (2008) Local structure and electrochemistry of LiNiyMnyCo1-2yO2 electrode materials for Li-ion batteries. Ionics 14:89–97

    Article  Google Scholar 

  170. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer GY, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to the electrochemical intercalation into LixMOy host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331

    Article  Google Scholar 

  171. Lee EH, Park JH, Cho JH, Cho SJ, Kim DW, Dan H, Kang Y, Lee SY (2013) Direct ultra-violet-assisted conformal coating of nanometer-thick poly(tri(2-(acryloyloxy)ethyl) phosphate gel polymer electrolytes on high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes. J Power Sourc 244:389–394

    Article  Google Scholar 

  172. Choi J, Manthiram A (2004) Comparison of the electrochemical behaviours of stoichiometric Li1.03(Ni1/3Mn1/3Co1/3)0.97O2 and lithium excess LiNi1/3Mn1/3Co1/3O2. Electrochem Solid State Lett 7:A365–A368

    Article  Google Scholar 

  173. Zhang X, Jiang WJ, Mauger A, Qi L, Gendron F, Julien CM (2010) Minimization of the cation mixing in Li1+x(NMC)1-xCo1/3O2 as cathode material. J Power Sourc 195:1292–1301

    Article  Google Scholar 

  174. Ligneel E, Nazri GA (2009) Improvement of LiNi1/3Mn1/3Co1/3O2 by a cationic substitution and effect of over-lithiation. ECS Trans 16–50:21–29

    Article  Google Scholar 

  175. Robertson AD, Bruce PG (2003) Mechanism of electrochemical activity in Li2MnO3. Chem Mater 15:1984–1992

    Article  Google Scholar 

  176. Gan C, Zhan H, Hu X, Zhou Y (2005) Origin of the irreversible plateau (4.5 V) of Li[Li0.182Ni0.182Co0.091Mn0.545]O2 layered material (2005). Electrochem Commun 7:1318–1322

    Article  Google Scholar 

  177. Lei CH, Wen JG, Sardela M, Bareno J, Petrov I, Kang SH, Abraham DP (2009) Structural study of Li2MnO3 by electron microscopy. J Mater Sci 44:5579–5587

    Article  Google Scholar 

  178. Yu DYW, Yanagida K, Kato Y, Nakamura H (2009) Electrochemical activities in Li2MnO3 batteries and energy storage. J Electrochem Soc 156:A417–A424

    Article  Google Scholar 

  179. Amalraj F, Markovsky B, Sharon D, Talianker M, Zinigrad E, Persky R, Haik O, Grinblat J, Lampert J, Schulz-Dobrick M, Garsuch A, Burlaka L, Aurbach D (2012) Study of the electrochemical behavior of the “inactive” Li2MnO3. Electrochim Acta 78:32–39

    Article  Google Scholar 

  180. Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater Sci Eng B 100:69–78

    Article  Google Scholar 

  181. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3-(1-x)LiMn0.333Ni0.333 Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  Google Scholar 

  182. Lu ZH, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    Article  Google Scholar 

  183. Armstrong AR, Robertson AD, Bruce PG (2005) Overcharging manganese oxides: extracting lithium beyond Mn4+. J Power Sourc 146:275–280

    Article  Google Scholar 

  184. Okamoto Y (2012) Ambivalent effect of oxygen vacancies on Li2MnO3: a first principles study. J Electrochem Soc 159:A152–A157

    Article  Google Scholar 

  185. Gabrisch H, Yi T, Yazami R (2008) Transmission electron microscope studies of LiNi1/3Mn1/3Co1/3O2 before and after long-term aging at 70 °C. Electrochem Solid State Lett 11:A119–A124

    Article  Google Scholar 

  186. Meng YS, de Dompablo EA (2009) First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci 2:589–609

    Article  Google Scholar 

  187. Ito A, Shoda K, Sato Y, Hatano M, Horie H, Ohsawa Y (2011) Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.17Mn0.56]O2 upon the first charge and discharge. J Power Sourc 196:4785–4790

    Article  Google Scholar 

  188. Amalraj F, Talianker M, Markovsky B, Sharon D, Burlaka L, Shafir G, Zinigrad E, Haik O, Aurbach D, Lampert J, Schulz-Dobrick M, Garsuch A (2013) Studies of Li and Mn-rich Lix[MnNoCo]O2 electrodes: electrochemical performance, structure, and the effect of the aluminum fluoride coating. J Electrochem Soc 160:A2220–A2233

    Article  Google Scholar 

  189. Amalraj SF, Burlaka L, Julien CM, Mauger A, Kovacheva D, Talianker M, Markovsky B, Auirbach D (2014) Phase transitions in Li2MnO3 electrodes at various states-of-charge. Electrochim Acta 123:395–404

    Article  Google Scholar 

  190. Von Meyer G, Hoppe R (1976) ZuV thermischen verhalten von Li3MnO4. Uber α- und β-Li2MnO3. Z Anorg Allg Chem 424:257–261

    Article  Google Scholar 

  191. Jonson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in composite xLi2MnO3⋅(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6:1085–1091

    Article  Google Scholar 

  192. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538

    Article  Google Scholar 

  193. Deng H, Belharouak I, Yoon CS, Amine K (2010) High temperatura performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc 157:A1035–A1039

    Article  Google Scholar 

  194. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn 0.6]O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  195. Yuan W, Zahng HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207

    Article  Google Scholar 

  196. Wang ZQ, Chen YC, Ouyang CY (2015) Polaron states and migration in F-doped Li2MnO3. Phys Lett A 378:2449–2452

    Article  Google Scholar 

  197. Röder P, Baba N, Wiemhöfer HD (2014) A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2-LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry. J Power Sourc 248:978–987

    Article  Google Scholar 

  198. Shi SJ, Tu JP, Tang YY, Liu XY, Zhao XY, Wang XL, Gu CD (2013) Morphology and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salts. J Power Sourc 241:186–195

    Article  Google Scholar 

  199. Toprakci O, Toprakci HAK, Li Y, Ji LW, Xue LG, Lee H, Zhang S, Zhang XW (2013) Synthesis and characterization of xLi2MnO3 · (1 − x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J Power Sourc 241:522–526

    Article  Google Scholar 

  200. Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD (2013) Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sourc 240:140–148

    Article  Google Scholar 

  201. Zhenyao W, Biao L, Jin M, Dingguo X (2014) Molten salt synthesis and high-performance of nanocrystalline Li-rich cathode materials. RSC Adv 4:15825–15829

    Article  Google Scholar 

  202. Zhang HZ, Qiao QQ, Li GR, Gao XP (2014) PO4 3- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J Mater Chem A 2:7454–7460

    Article  Google Scholar 

  203. Myung ST, Lee KS, Sun YK, Yashiro H (2011) Development of high power lithium-ion batteries: layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. J Power Sources 196:7039–7043

    Article  Google Scholar 

  204. Zhu Z, Zhu L (2014) Synthesis of layered cathode material 0.5Li2MnO3-0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sourc 256:178–182

    Article  Google Scholar 

  205. Shi SJ, Lou ZR, Xia TF, Gu CD, Tu JP (2014) Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template method as a cathode material for lithium ion batteries. J Power Sourc 257:198–204

    Article  Google Scholar 

  206. Croy KSH, Balasubramanian M, Thackeray MM (2011) Li2MnO3-based composite cathodes for lithium batteries: a novel synthesis approach and new structures. Electrochem Commun 13:1063–1066

    Article  Google Scholar 

  207. Li J, Klöpsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J Power Sourc 196:4821–4825

    Article  Google Scholar 

  208. Chen Y, Xu G, Li J, Zhang Y, Chen Z, Kang F (2013) High capacity 0.5Li2MnO3-0.5LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochim Acta 87:686–892

    Article  Google Scholar 

  209. Kim JH, Sun YK (2003) Electrochemical performance of Li[LixNi(1-3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol-gel method. J Power Sourc 119:166–170

    Article  Google Scholar 

  210. Zhao X, Cui Y, Xiao L, Liang H, Liu H (2011) Molten salt synthesis of Li1+x(Ni0.5Mn0.5)1-xO2 as cathode material for Li-ion batteries. Solid State Ionics 192:321–325

    Article  Google Scholar 

  211. Kim MG, Jo M, Hong YS, Cho J (2009) Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun 218–220

    Google Scholar 

  212. Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3-2x/3)Mn(1/3-x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett 4:A191–A194

    Article  Google Scholar 

  213. Wu Y, Manthiram A (2007) Effect of Al3+ and F- doping on the irreversible oxygen loss from layered Li[Li0.17Mn0.58Ni0.25]O2 cathodes. Electrochem Solid State Lett 10:A151–A154

    Article  Google Scholar 

  214. Tran N, Croguennec L, Menetrier M, Weill F, Biensan P, Jordy C, Delmas C (2008) Mechanisms associated with the plateau observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem Mater 20:4815–4825

    Article  Google Scholar 

  215. Wang ZY, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for Li-ion batteries. J Power Sourc 236:25–32

    Article  Google Scholar 

  216. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3⋅0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186–A1192

    Article  Google Scholar 

  217. Tang JH, Wang ZX, Li XH, Peng WJ (2012) Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn0.65(1-x)Ni0.35(1-x)]O2 cathode materials for lithium batteries. J Power Sourc 204:187–192

    Article  Google Scholar 

  218. Tran HY, Täubert C, Fleischhammer M, Axmann P, Küppers L, Wohlfahrt-Mehrens M (2011) LiMn2O4 spinel/LiNi0.8Co0.15Al0.05O2 blends as cathode materials for lithium-ion batteries. J Electrochem Soc 158:A556–A561

    Article  Google Scholar 

  219. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sourc 191:644–647

    Article  Google Scholar 

  220. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    Article  Google Scholar 

  221. Gummow RJ, Liles DC, Thackeray MM (1993) Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel. Mater Res Bull 28:1249–1256

    Article  Google Scholar 

  222. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    Article  Google Scholar 

  223. Davidson IJ, McMillan RS, Murray JJ (1995) Rechargeable cathodes based on Li2CrxMn2-xO4. J Power Sourc 54:205–208

    Article  Google Scholar 

  224. Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157–A1163

    Article  Google Scholar 

  225. Doeff MM, Richardson TJ, Kepley L (1996) Lithium insertion processes of orthorhombic NaxMnO2-based electrode materials. J Electrochem Soc 143:2507–2516

    Article  Google Scholar 

  226. Jeong YU, Manthiram A (1999) Synthesis and lithium intercalation properties of Na0.5-xLixMnO2+δ and Na0.5-xMnO2+δ cathodes. Electrochem Solid State Lett 2:421–424

    Article  Google Scholar 

  227. Kim J, Manthiram A (1999) Amorphous manganese oxyiodides exhibiting high lithium intercalation capacity at higher current density. Electrochem Solid State Lett 2:55–57

    Article  Google Scholar 

  228. Takeda Y, Kanno R, Tsuji Y, Yamamoto O (1983) Chromium oxides as cathodes for lithium cells. J Power Sourc 9:325–328

    Article  Google Scholar 

  229. Yamamoto O, Takeda Y, Kanno R, Oyabe Y, Shinya Y (1987) Amorphous chromium oxide, a new lithium battery cathode. J Power Sourc 20:151–156

    Article  Google Scholar 

  230. Kim J, Manthiram A (1997) Synthesis, characterization, and electrochemical properties of amorphous CrO2-δ (0≤δ≤0.5) cathodes. J Electrochem Soc 144:3077–3081

    Article  Google Scholar 

  231. Abdel-Ghany AE, Mauger A, Groult H, Zaghib K, Julien CM (2012) Structural properties and electrochemistry of α-LiFeO2. J Power Sourc 197:285–291

    Article  Google Scholar 

  232. Wang W, Wang H, Liu S, Huang J (2010) Synthesis of γ-LiV2O5 nanorods as high-performance cathode for Li ion battery. J Solid State Electrochem 16:2555–2561

    Article  Google Scholar 

  233. Yang G, Wang G, Hou W (2005) Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries. J Phys Chem B 109:11186–11196

    Article  Google Scholar 

  234. Delmas C, Braconnier JJ, Hagenmuller P (1982) A new variety of LiCoO2 with an unusual packing obtained by exchange reaction. Mater Res Bull 17:117–123

    Article  Google Scholar 

  235. Paulsen JM, Mueller-Neuhaus JM, Dahn JR (2000) Layered LiCoO2 with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries. J Electrochem Soc 147:508–516

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Julien, C., Mauger, A., Vijh, A., Zaghib, K. (2016). Cathode Materials with Two-Dimensional Structure. In: Lithium Batteries. Springer, Cham. https://doi.org/10.1007/978-3-319-19108-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19108-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19107-2

  • Online ISBN: 978-3-319-19108-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics