Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 217))

  • 1415 Accesses

Abstract

The historical survey of the evolution of the knowledge in neuropathological HD research provided in this monograph shows that the stepwise scientific progress made during a time period of more than one century (1) has considerably changed the traditional, reductionistic pathoanatomical, and pathophysiological concepts of the polyglutamine disease HD, which were unilaterally based on the well-known degeneration of the striatum and (2) have paved the way for basic research aimed at elucidation of the pathogenic mechanisms leading to HD. The focused efforts and progress in neuropathological HD research led to the development, establishment, and international appreciation of a simple, but reliable grading system of the chronological and topographical progression and severity of the HD-related degeneration in the striatum. They form the empirical base for the implementation of the cerebral allo- and neocortex as additional main targets of the disease process of HD (Figs. 1.4, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 3.1, 3.2, and 3.3) and favor the view that the consistent degeneration of the pallidum, select thalamic nuclei, cerebellum, and brainstem also represents inherent features of the HD brain pathology (Figs. 2.10, 2.11, 4.4, 4.5, 5.2, 5.3, 5.4, 5.5, 6.4, and 6.5) (see Chaps. 1, 2, and 3) (Atkin and Paulson 2014; Borrell-Pagès et al. 2006; Braak and Braak 1992a, b; Bruyn et al. 1979; De la Monte et al. 1988; Estrada-Sanchez and Rebec 2013; Fennema-Notestine et al. 2004; Ferrante et al. 1987; Finkbeiner and Mitra 2008; Hedreen et al. 1991; Heinsen et al. 1992, 1994, 1996, 1999; Heinsen and Rüb 1997; Imarisio et al. 2008; Lange 1981; Lange and Aulich 1986; Lange et al. 1976; Li and Conforti 2013; Margolis and Ross 2003; Myers et al. 1988; Rosas et al. 2003; Rüb et al. 2009, 2013a, 2014a, b; Schulte and Littleton 2011; Selemon et al. 2004; Sotrel et al. 1991; Valera et al. 2005; Vonsattel 2008; Vonsattel and DiFiglia 1998; Vonsattel et al. 1985; Walker 2007a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkin G, Paulson H (2014) Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci 7:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz NA, van der Marck MA, Pijl H, Olde Rikkert MG, Bloem BR, Roos RA (2008) Weight loss in neurodegenerative disorders. J Neurol 255:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Borrell-Pagès M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1992a) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1992b) Allocortical involvement in Huntington’s disease. Neuropathol Appl Neurobiol 18:539–547

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Braak H, Rüb U, Gai WP, Del Tredici K (2003c) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruyn GW, Bots GTAM, Dom R (1979) Huntington’s chorea: current neuropathological status. Adv Neurol 23:83–93

    Google Scholar 

  • Büttner U, Büttner-Ennever JA (2006) Present concepts of oculomotor organization. Prog Brain Res 151:1–42

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151:95–125

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (1997) Anatomical substrates of oculomotor control. Curr Opin Neurobiol 7:872–879

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (2004) Reticular formation: eye movements, gaze, and blinks. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 479–510

    Chapter  Google Scholar 

  • Büttner-Ennever JA, Büttner U, Cohen B, Baumgartner G (1982) Vertical glaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149

    Article  PubMed  Google Scholar 

  • Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452:1–17

    Article  CAS  PubMed  Google Scholar 

  • De la Monte SM, Vonsattel JP, Richardson EP Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47:516–525

    Article  PubMed  Google Scholar 

  • Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Sanchez AM, Rebec GV (2013) Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Fennema-Notestine C, Archibald SL, Jacobson MW, Corey-Bloom J, Paulsen JS, Peavy GM, Gamst AC, Hamilton JM, Salmon DR, Jernigan TL (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EPJ (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S, Mitra S (2008) The ubiquitin-proteasome pathway in Huntington’s disease. ScientificWorldJournal 8:421–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    Article  PubMed  Google Scholar 

  • Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trend Neurosci 33:317–325

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133:257–261

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Rüb U (1997) Quantitative investigations of neural circuits in Huntington’s disease. J Neural Transm 104:1139–1140

    Google Scholar 

  • Heinsen H, Bauer M, Ulmar G, Gangnus D, Jungkunz G (1992) The entorhinal region in Huntington's disease: a cytoarchitectonic and quantitative investigation in five cases. Clin Neuropathol 11:226–226

    Google Scholar 

  • Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, Gangnus D, Jungkunz G, Eisenmenger W, Götz M (1994) Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol 88:320–333

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Rüb U, Gangnus D, Jungkunz G, Bauer M, Ulmar G, Bethke B, Schüler M, Böcker F, Eisenmenger W, Götz M, Strik M (1996) Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington’s disease. Acta Neuropathol 91:161–168

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Rüb U, Bauer M, Ulmar G, Bethke B, Schüler M, Böcker F, Eisenmenger W, Götz M, Korr H, Schmitz C (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622

    Article  CAS  PubMed  Google Scholar 

  • Hoche F, Seidel K, Brunt ER, Auburger G, Schöls L, Bürk K, de Vos RA, den Dunnen W, Bechmann I, Egensperger R, Van Broeckhoven C, Gierga K, Deller T, Rüb U (2008) Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7). Neuropathol Appl Neurobiol 34:479–491

    Article  CAS  PubMed  Google Scholar 

  • Horn AK (2006) The reticular formation. Prog Brain Res 151:127–155

    Article  PubMed  Google Scholar 

  • Horn AKE, Büttner U, Büttner-Ennever JA (1999) Brainstem and cerebellar structures for eye movement generation. Adv Otorhinolaryngol 55:1–25

    CAS  PubMed  Google Scholar 

  • Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191–209

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ (2004) Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 25:619–627

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer B, Weber B, Hayden MR (1992) New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 2:321–335

    Article  CAS  PubMed  Google Scholar 

  • Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lace GL, Wharton SB, Ince PG (2007) A brief history of tau: the evolving view of the microtubule-associated protein tau in neurodegenerative diseases. Clin Neuropathol 26:43–58

    Article  CAS  PubMed  Google Scholar 

  • Lange HW (1981) Quantitative changes of telencephalon, diencephalon, and mesencephalon in Huntington’s chorea, postencephalitic, and idiopathic Parkinsonism. Verh Anat Ges 73:923–925

    Google Scholar 

  • Lange HW, Aulich A (1986) Die Hirnatrophie bei der Huntingtonschen Krankheit. In: Oepen H (ed) Die Huntingtonsche Krankheit. Hippokrates, Stuttgart, pp 25–41

    Google Scholar 

  • Lange H, Thorner G, Hopf A, Schröder KF (1976) Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci 28:401–425

    Article  CAS  PubMed  Google Scholar 

  • Lastres-Becker I, Rüb U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    Article  CAS  PubMed  Google Scholar 

  • Leigh RJ, Kennard C (2004) Using saccades as a research tool in the clinical neurosciences. Brain 127:460–477

    Article  CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Li JY, Conforti L (2013) Axonopathy in Huntington’s disease. Exp Neurol 246:62–71

    Article  PubMed  Google Scholar 

  • Margolis RL, Ross CA (2003) Diagnosis of Huntington disease. Clin Chem 49:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14:161–176

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: Focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, Bird ED (1988) Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 38:341–347

    Article  CAS  PubMed  Google Scholar 

  • Norrby E (2011) Prions and protein-folding diseases. J Intern Med 270:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ortega Z, Díaz-Hernández M, Lucas JJ (2007) Is the ubiquitin-proteasome system impaired in Huntington’s disease? Cell Mol Life Sci 64:2245–2257

    Article  CAS  PubMed  Google Scholar 

  • Petersen A, Gil J, Maat-Schieman ML, Bjorkqvist M, Tanila H, Araujo IM, Smith R, Popovic N, Wierup N, Norlen P, Li JY, Ross RA, Sundler F, Mulder H, Brundin P (2005) Orexin loss in Huntington’s disease. Hum Mol Genet 14:39–47

    Article  CAS  PubMed  Google Scholar 

  • Renner M, Melki R (2014) Protein aggregation and prionopathies. Pathol Biol 62:162–168

    Article  CAS  PubMed  Google Scholar 

  • Riess O, Rüb U, Pastore A, Bauer P, Schöls L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7:125–137

    Article  CAS  PubMed  Google Scholar 

  • Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Kaplan K (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RA, Braak H (2003a) The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 25:115–127

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER, de Vos RA, Del Turco D, Del Tredici K, Gierga K, Schultz C, Ghebremedhin E, Bürk K, Auburger G, Braak H (2004a) Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol 30:402–414

    Article  PubMed  Google Scholar 

  • Rüb U, Bürk K, Schöls L, Brunt ER, de Vos RA, Diaz GO, Gierga K, Ghebremedhin E, Schultz C, Del Turco D, Mittelbronn M, Auburger G, Deller T, Braak H (2004b) Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology 63:1258–1263

    Article  PubMed  Google Scholar 

  • Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, Bürk K, Auburger G, Bohl J, Schultz C, Vuksic M, Burbach GJ, Braak H, Deller T (2005) Spinocerebellar ataxias types 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm 112:1523–1545

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER, Deller T (2008a) New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 21:111–116

    Article  PubMed  Google Scholar 

  • Rüb U, Jen JC, Braak H, Deller T (2008b) Functional neuroanatomy of the human premotor oculomotor brainstem nuclei: insights from postmortem and advanced in vivo imaging studies. Exp Brain Res 187:167–180

    Article  PubMed  Google Scholar 

  • Rüb U, Heinsen H, Brunt ER, Landwehrmeyer B, den Dunnen WF, Gierga K, Deller T (2009) The human premotor oculomotor brainstem system – can it help to understand oculomotor symptoms in Huntington’s disease? Neuropathol Appl Neurobiol 35:4–15

    Article  PubMed  Google Scholar 

  • Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D, Paulson HL, Bohl J, von Gall C, Vonsattel JP, Korf HW, den Dunnen WF (2013a) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23:165–177

    Article  PubMed  Google Scholar 

  • Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T (2013b) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66

    Article  PubMed  Google Scholar 

  • Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K, Bouzrou M, Auburger G, Paulson H, Vonsattel JP, Lange H, Korf HW, den Dunnen W (2014a) Huntington’s disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 24:247–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Rüb U, Seidel K, Vonsattel JP, Lange HW, Eisenmenger W, Götz, M, Del Turco, D, Bouzrou M, Korf HW, Heinsen H (2014b) Huntington’s disease (HD): neurodegeneration of Brodmann’s primary visual area 17 (BA17). Brain Pathol [Epub ahead of print]

    Google Scholar 

  • Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555

    Article  CAS  PubMed  Google Scholar 

  • Scherzed W, Brunt ER, Heinsen H, de Vos RA, Seidel K, Bürk K, Schöls L, Auburger G, Del Turco D, Deller T, Korf HW, den Dunnen WF, Rüb U (2012) Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum 11:749–760

    Article  CAS  PubMed  Google Scholar 

  • Schulte J, Littleton JT (2011) The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr Trends Neurol 5:65–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21

    Article  CAS  PubMed  Google Scholar 

  • Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT, Wicht H, Korf HW, den Dunnen W, Rüb U (2014) The brainstem pathologies of Parkinson’s disease and dementia with lewy bodies. Brain Pathol [Epub ahead of print]

    Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (2004) Evidence for progression in frontal cortical pathology in late-stage Huntington’s disease. J Comp Neurol 468:190–204

    Article  PubMed  Google Scholar 

  • Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Valera AG, Diaz-Hernandez M, Hernandez F, Ortega Z, Lucas JJ (2005) The ubiquitin-proteasome system in Huntington’s disease. Neuroscientist 11:583–594

    Article  CAS  PubMed  Google Scholar 

  • van Wamelen DJ, Aziz NA, Roos RA, Swaab DF (2014) Hypothalamic alterations in Huntington’s disease patients: comparison with genetic rodent models. J Neuroendocrinol 26:761–775

    Article  PubMed  Google Scholar 

  • Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:55–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  • Walker FO (2007a) Huntington’s disease. Semin Neurol 27:143–150

    Article  PubMed  Google Scholar 

  • Walker FO (2007b) Huntington’s disease. Lancet 369:218–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rüb, U., Vonsattel, J.P.G., Heinsen, H., Korf, HW. (2015). Conclusions and Outlook. In: The Neuropathology of Huntington’s Disease: Classical Findings, Recent Developments and Correlation to Functional Neuroanatomy. Advances in Anatomy, Embryology and Cell Biology, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-19285-7_11

Download citation

Publish with us

Policies and ethics