Skip to main content

Abstract

The need for appropriate animal models to conduct translational research is vital for advancements in the diagnosis and treatment of heart disease. The choice of animal model to be employed must be critically evaluated. In this chapter, we present the comparative cardiac anatomies of several of the commonly employed animal models for preclinical research (dog, pig, and sheep). General comparisons focus on several specific anatomical features: the atria, ventricles, valves, coronary system, lymphatics, and the conduction system. Finally, we present novel qualitative and quantitative data obtained from perfusion-fixed specimens of these commonly used animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul EF, Paul J (2001) Why animal experimentation matters: the use of animals in medical research. Social Philosophy and Policy Foundation: Transaction, New Brunswick

    Google Scholar 

  2. Monamy V (ed) (2000) Animal experimentation: a guide to the issues. Cambridge University Press, Cambridge/New York

    Google Scholar 

  3. Nutton V (2002) Portraits of science. Logic, learning, and experimental medicine. Science 295:800–801

    Article  CAS  PubMed  Google Scholar 

  4. Persaud TVN (ed) (1997) A history of anatomy: the post-Vesalian era. Charles C Thomas Publisher, Springfield

    Google Scholar 

  5. Hearse DJ (2000) The elusive coypu: the importance of collateral flow and the search for an alternative to the dog. Cardiovasc Res 45:215–219

    Article  CAS  Google Scholar 

  6. Christensen GC, Campeti FL (1959) Anatomic and functional studies of the coronary circulation in the dog and pig. Am J Vet Res 20:18–26

    CAS  PubMed  Google Scholar 

  7. Hughes HC (1986) Swine in cardiovascular research. Lab Anim Sci 36:348–350

    CAS  PubMed  Google Scholar 

  8. Kong Y, Chen JT, Zeft HJ et al (1969) Natural history of experimental coronary occlusion in pigs: a serial cineangiographic study. Am Heart J 77:45–54

    Article  CAS  PubMed  Google Scholar 

  9. Verdouw PD, van den Doel MA, de Zeeuw S et al (1998) Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc Res 39:121–135

    Article  CAS  PubMed  Google Scholar 

  10. Getty R (1975) General heart and blood vessels. In: Getty R (ed) Sisson and Grossman’s the anatomy of the domestic animals, 5th edn. Saunders, Philadelphia, pp 164–175

    Google Scholar 

  11. Michaëlsson M, Ho SY (eds) (2000) Congenital heart malformations in mammals: an illustrated text. Imperial College Press, London/River Edge

    Google Scholar 

  12. Ghoshal NG (1975) Ruminant, carnivore, porcine: heart and arteries. In: Sisson S, Grossman JD, Getty R (eds) Sisson and Grossman’s: the anatomy of the domestic animals, 5th edn. Saunders, Philadelphia, pp 960–1023, 1594–1651, 1306–1342

    Google Scholar 

  13. Crick SJ, Sheppard MN, Ho SY et al (1998) Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 193:105–119

    Article  PubMed Central  PubMed  Google Scholar 

  14. Evans HE (1993) The heart and arteries. In: Miller ME, Evans HE (eds) Miller’s anatomy of the dog, 3rd edn. Saunders, Philadelphia, pp 586–602

    Google Scholar 

  15. Netter FH (ed) (1979) Heart. Ciba Pharmaceutical Company. Medical Education Division. The Division, West Caldwell

    Google Scholar 

  16. Holt JP, Rhode EA, Kines H (1968) Ventricular volumes and body weight in mammals. Am J Physiol 215:704–715

    CAS  PubMed  Google Scholar 

  17. Lee JC, Taylor FN, Downing SE (1975) A comparison of ventricular weights and geometry in newborn, young, and adult mammals. J Appl Physiol 38:147–150

    CAS  PubMed  Google Scholar 

  18. Holt JP (1970) The normal pericardium. Am J Cardiol 26:455–465

    Article  CAS  PubMed  Google Scholar 

  19. Naimark WA, Lee JM, Limeback H et al (1992) Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. Am J Physiol 263:H1095–H1106

    CAS  PubMed  Google Scholar 

  20. Spodick DH (ed) (1997) The pericardium: a comprehensive textbook. M. Dekker, New York

    Google Scholar 

  21. Moore T, Shumacker HJ (1953) Congenital and experimentally produced pericardial defects. Angiology 4:1–11

    Article  CAS  PubMed  Google Scholar 

  22. Elias H, Boyd L (1960) Notes on the anatomy, embryology and histology of the pericardium. J N Y Med Coll 2:50–75

    CAS  Google Scholar 

  23. Hurst JW (ed) (1988) Atlas of the heart. McGraw-Hill: Gower Medical Pub, New York

    Google Scholar 

  24. Montagna W (ed) (1959) Comparative anatomy. Wiley, New York

    Google Scholar 

  25. Kent GC, Carr RK (eds) (2001) Comparative anatomy of the vertebrates, 9th edn. McGraw Hill, Boston

    Google Scholar 

  26. Truex RC, Warshaw LJ (1942) The incidence and size of the moderator band in man and mammals. Anat Rec 82:361–372

    Article  Google Scholar 

  27. Gerlis LM, Wright HM, Wilson N et al (1984) Left ventricular bands. A normal anatomical feature. Br Heart J 52:641–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Quill JL, Hill AJ, Laske TG, Alfieri O, Iaizzo PA (2009) Mitral leaflet anatomy revisited. J Thorac Cardiovasc Surg 137:1077–1081

    Article  PubMed  Google Scholar 

  29. Walmsley R (1978) Anatomy of human mitral valve in adult cadaver and comparative anatomy of the valve. Br Heart J 40:351–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sands MP, Rittenhouse EA, Mohri H et al (1969) An anatomical comparison of human pig, calf, and sheep aortic valves. Ann Thorac Surg 8:407–414

    Article  CAS  PubMed  Google Scholar 

  31. Ansari A (2001) Anatomy and clinical significance of ventricular Thebesian veins. Clin Anat 14:102–110

    Article  CAS  PubMed  Google Scholar 

  32. Pina JAE, Correia M, O’Neill JG (1975) Morphological study on the Thebesian veins of the right cavities of the heart in the dog. Acta Anat 92:310–320

    Article  Google Scholar 

  33. Ruengsakulrach P, Buxton BF (2001) Anatomic and hemodynamic considerations influencing the efficiency of retrograde cardioplegia. Ann Thorac Surg 71:1389–1395

    Article  CAS  PubMed  Google Scholar 

  34. Weaver ME, Pantely GA, Bristow JD et al (1968) A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res 20:907–917

    Article  Google Scholar 

  35. Anderson RH, Becker AE (eds) (1992) The heart: structure in health and disease. Gower Medical Pub, London/New York

    Google Scholar 

  36. Kloner RA, Ganote CE, Reimer KA et al (1975) Distribution of coronary arterial flow in acute myocardial ischemia. Arch Pathol 99:86–94

    CAS  PubMed  Google Scholar 

  37. Koke JR, Bittar N (1978) Functional role of collateral flow in the ischaemic dog heart. Cardiovasc Res 12:309–315

    Article  CAS  PubMed  Google Scholar 

  38. Redding VJ, Rees JR (1968) Early changes in collateral flow following coronary artery ligation: the role of the sympathetic nervous system. Cardiovasc Res 2:219–225

    Article  CAS  PubMed  Google Scholar 

  39. Weisse AB, Kearney K, Narang RM et al (1976) Comparison of the coronary collateral circulation in dogs and baboons after coronary occlusion. Am Heart J 92:193–200

    Article  CAS  PubMed  Google Scholar 

  40. Schaper W, Flameng W, De Brabander M (1972) Comparative aspects of coronary collateral circulation. Adv Exp Med Biol 22:267–276

    Article  CAS  PubMed  Google Scholar 

  41. Gregg D, Shipley R (1947) Studies of the venous drainage of the heart. Am J Physiol 151:13–25

    CAS  PubMed  Google Scholar 

  42. Patek PP (1939) The morphology of the lymphatics of the mammalian heart. Am J Anat 64:203–249

    Article  Google Scholar 

  43. Johnson RA, Blake TM (1966) Lymphatics of the heart. Circulation 33:137–142

    Article  CAS  PubMed  Google Scholar 

  44. Symbas PN, Cooper T, Gantner GEJ et al (1963) Lymphatic drainage of the heart: effect of experimental interruption of lymphatics. Surg Forum 14:254–256

    CAS  PubMed  Google Scholar 

  45. Anderson RH, Becker AE, Brechenmacher C et al (1975) The human atrioventricular junctional area. A morphological study of the A-V node and bundle. Eur J Cardiol 3:11–25

    CAS  PubMed  Google Scholar 

  46. Bharati S, Levine M, Huang SK et al (1991) The conduction system of the swine heart. Chest 100:207–212

    Article  CAS  PubMed  Google Scholar 

  47. Frink RJ, Merrick B (1974) The sheep heart: coronary and conduction system anatomy with special reference to the presence of an os cordis. Anat Rec 179:189–200

    Article  CAS  PubMed  Google Scholar 

  48. Ho SY, Kilpatrick L, Kanai T et al (1995) The architecture of the atrioventricular conduction axis in dog compared to man: its significance to ablation of the atrioventricular nodal approaches. J Cardiovasc Electrophysiol 6:26–39

    Article  CAS  PubMed  Google Scholar 

  49. Hearse DJ, Sutherland FJ (2000) Experimental models for the study of cardiovascular function and disease. Pharmacol Res 41:597–603

    Article  CAS  PubMed  Google Scholar 

  50. Macdonald AA, Johnstone M (1995) Comparative anatomy of the cardiac foramen ovale in cats (Felidae), dogs (Canidae), bears (Ursidae) and hyaenas (Hyaenidae). J Anat 186:235–243

    PubMed Central  PubMed  Google Scholar 

  51. Joudinaud TM, Flecher EM, Duran CM (2006) Functional terminology for the tricuspid valve. J Heart Valve Dis 15:382–388

    PubMed  Google Scholar 

  52. Anderson RH, Cook AC (2007) The structure and components of the atrial chambers. Europace 9:vi3–vi9

    Google Scholar 

  53. Lev M, Rowlatt UF, Rimoldi HJ (1961) Pathologic methods for the study of the congenitally malformed heart. AMA Arch Pathol 72:493–511

    CAS  Google Scholar 

  54. Rowlatt UF, Rimoldi HJ, Lev M (1963) The quantitative anatomy of the normal child’s heart. Pediatr Clin N Am 10:499–588

    Google Scholar 

  55. Eckner FA, Brown BW, Overll E et al (1969) Alteration of the gross dimensions of the heart and its structures by formalin fixation. A quantitative study. Virchows Arch A Pathol Pathol Anat 346:318–329

    Article  CAS  PubMed  Google Scholar 

  56. Alvarez L, Rodriquez JE, Saucedo R et al (1995) Swine hearts: quantitative anatomy of the right ventricle. Anat Histol Embryol 24:25–27

    Article  CAS  PubMed  Google Scholar 

  57. Gorman JH 3rd, Gorman RC, Jackson BM et al (1997) Distortions of the mitral valve in acute ischemic mitral regurgitation. Ann Thorac Surg 64:1026–1031

    Article  PubMed  Google Scholar 

  58. Timek TA, Lai DT, Tibayan F et al (2002) Atrial contraction and mitral annular dynamics during acute left atrial and ventricular ischemia in sheep. Am J Physiol Heart Circ Physiol 283:H1929–H1935

    Article  CAS  PubMed  Google Scholar 

  59. Tsakiris AG, Padiyar R, Gordon DA et al (1977) Left atrial size and geometry in the intact dog. Am J Physiol 232:H167–H172

    CAS  PubMed  Google Scholar 

  60. Chandraratna PA, Aronow WS (1981) Mitral valve ring in normal vs dilated left ventricle. Cross-sectional echocardiographic study. Chest 79:151–154

    Article  CAS  PubMed  Google Scholar 

  61. Nordblom P, Bech-Hanssen O (2007) Reference values describing the normal mitral valve and the position of the papillary muscles. Echocardiography 24:665–672

    Article  PubMed  Google Scholar 

  62. Lansac E, Lim HS, Shomura Y et al (2002) A four-dimensional study of the aortic root dynamics. Eur J Cardiothorac Surg 22:497–503

    Article  CAS  PubMed  Google Scholar 

  63. Sim EK, Muskawad S, Lim CS et al (2003) Comparison of human and porcine aortic valves. Clin Anat 16:193–196

    Article  PubMed  Google Scholar 

  64. Swanson M, Clark RE (1974) Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res 35:871–882

    Article  CAS  PubMed  Google Scholar 

  65. Jouan J, Pagel MR, Hiro ME et al (2007) Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J Heart Valve Dis 16:511–518

    PubMed  Google Scholar 

  66. Anwar AM, Geleijnse ML, Soliman OI et al (2007) Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 23:717–724

    Article  PubMed Central  PubMed  Google Scholar 

  67. Maric I, Bobinac D, Ostojic L et al (1996) Tributaries of the human and canine coronary sinus. Acta Anat (Basel) 156:61–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Iaizzo PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hill, A.J., Iaizzo, P.A. (2015). Comparative Cardiac Anatomy. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_6

Download citation

Publish with us

Policies and ethics